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Abstract 

Automatic Speech Recognition (ASR) systems often struggle 

with transcribing child speech due to the lack of large child 

speech datasets required to accurately train child-friendly ASR 

models. However, there are huge amounts of annotated adult 

speech datasets which were used to create multilingual ASR 

models, such as Whisper. Our work aims to explore whether 

such models can be adapted to child speech to improve ASR for 

children. In addition, we compare Whisper child-adaptations 

with finetuned self-supervised models, such as wav2vec2. We 

demonstrate that finetuning Whisper on child speech yields 

significant improvements in ASR performance on child speech, 

compared to non-finetuned Whisper models. Additionally, 

utilizing self-supervised Wav2vec2 models that have been 

finetuned on child speech outperforms Whisper finetuning. 

Index Terms: Child Speech Recognition, Automatic Speech 

Recognition, Whisper model, MyST, PF-STAR, CMU Kids 

1. Introduction 

Automatic Speech Recognition (ASR) faces several challenges, 

including limited training data, untranscribed training data and 

performance degradation on non-native speech and children's 

speech. Recent research in ASR tackles some of these 

problems, especially for adult speech, and therefore ASR on 

adult speech has reached human-level performance [1]–[4]. 

However, for child speech, progress has been slow and ASR 

models still perform poorly. Unlike adult speech data, high 

quality child speech datasets required for training are limited 

and challenging to collect and annotate (see the survey in [5]). 

Additionally, there are inherent differences between adult and 

child voices in terms of pitch, linguistic and acoustic features, 

and pronunciation ability [6], [7]. The shorter vocal tract length 

and higher fundamental frequency [8] of children's voices also 

add to the complexity of recognizing child speech. 

 

Recent development in self-supervised learning has delivered 

improvements for child speech. The development of 

unsupervised pretraining techniques, such as Wav2vec2 [3], has 

greatly contributed to the progress of child ASR [9]–[11]. 

However, a finetuning stage on a labeled dataset is required for 

ASR, which limits their usefulness since finetuning can find 

patterns within a training dataset and boost performance on the 

similar datasets but may not generalize to other dataset 

distributions. The aim of speech recognition systems is to 

operate with high reliability in diverse environments, without 

the need for finetuning for the data/deployment distribution of 

each specific usecase. We reviewed various supervised learning 

approaches [12]–[14] in child ASR. It was observed that most 

of these studies included transfer learning approaches from 

adult to child speech [9], [12], [15], data augmentation methods 

[16]–[20], or weakly supervised training [14], [15], [21]. 

Recent findings in supervised learning approaches [22], [23] 

has demonstrated that pretraining speech recognition models on 

multiple datasets/domains using supervised methods can 

enhance the models' robustness and generalization performance 

on unseen datasets.  

 

In this work, we use a recent State-of-the-Art (SOTA) 

supervised ASR model, called Whisper. The authors of 

Whisper [4] have successfully bridged the gap in weakly 

supervised speech recognition by using large amounts of 

labeled audio data. They have also broadened the scope of 

weakly supervised pre-training beyond English-only speech 

recognition to be multilingual and multitask, showing great 

performance on different multilingual adult speech datasets [4]. 

These findings suggest that the scaling of weakly supervised 

pretraining has been undervalued for speech recognition. We 

use these Whisper models to provide an analysis of supervised 

training paradigms on different child speech datasets. We also 

finetune these models using different combinations of child 

speech datasets to see the subsequent speech recognition 

performance on different seen and unseen distributions of child 

speech datasets [24]–[26]. Lastly, we provide a comparative 

analysis of Whisper results with previously benchmarked 

results that used wav2vec2 self-supervised learning approach 

trained on the same distribution of datasets [27]. We use a 

similar approach as used by the authors of [28] for providing a 

comparison between Whisper and wav2vec2 results.  

 

Since Whisper is trained with an order of magnitude more data 

than wav2vec2 (680k vs 60k) and contains a lot of multilingual 

and low resource languages during training, we believe that this 

multilingual data can be utilized to provide child speech 

recognition tasks via finetuning. Our goal is to evaluate the 

efficacy of these two methodologies in child speech analysis 

and determine their potential for enhancing child ASR 

technology and developing educational tools for children.  

2. Model Description 

2.1. Whisper [4] 

The Whisper approach focuses on broadening the scope of 

weakly supervised pre-training beyond English-only speech 

recognition to be both multilingual and multitask. Of the 

680,000 hours of labelled audio used by Whisper, 117,000 

hours cover 96 other languages. The dataset also includes 

125,000 hours of X→en translation data. The model processes 

audio through a system of transformer blocks with residual 
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connections and final layer normalization. The model uses a 

multitask format to perform the entire speech processing 

pipeline, including transcription, translation, voice activity 

detection, alignment, and language identification. The model is 

based on an encoder-decoder Transformer, which is fed 80-

channel log-Mel spectrograms. The encoder is formed by two 

convolutional layers with a kernel size of 3, followed by a 

sinusoidal positional encoding, and a stacked set of 

Transformer blocks. The decoder uses the learned positional 

embeddings and the same number of Transformer blocks as the 

encoder. The Whisper architecture is explained in detail in [4].  

2.2. Wav2vec2 [3] 

Wav2vec 2.0 is a speech recognition model and training 

approach that is based on a self-supervised learning of speech 

representations using a two-stage architecture for pretraining 

and finetuning. The architecture of wav2vec 2.0 can be divided 

into three main parts: a CNN feature extractor, a transformer-

based encoder, and a quantization module (see [3] for more 

details) . In the pretraining phase, the model is trained on a large 

dataset of unlabelled speech data. The model learns meaningful 

representations by capturing the temporal and spectral 

characteristics of speech using a masked contrastive loss 

function. In the finetuning phase, the pretrained model is 

finetuned on a smaller labeled dataset for a specific downstream 

task. The last layer of the pretrained model is replaced with a 

task-specific feed-forward layer and the entire model is 

optimized by minimizing the CTC loss [29] for ASR.  

2.3. Training details  

All models were trained using A6000 GPUs with 48GB of 

available memory. We provide the architectural parameters 

details in Table 1 for both Whisper and wav2vec2 models used 

in this work. Whisper models are trained with a large number 

of parameters and therefore should provide better 

generalization towards unseen datasets compared to wav2vec2.  

Table 1: Architecture parameters for Whisper [4] and 

wav2vec2 [3] models.  

Models Layers Width Heads Learning 

Rate 

Para-

meters 

Whisper Models: 

Tiny 4 384 6 1.5 x 10-3 39M 

Base 6 512 8 1 x 10-3 72M 

Small 12 768 12 5 x 10-4 244M  

Medium  24 1024 16 2.5 x 10-4 769M  

Large  32 1280 20 1.75 x 10-4 1550M 

Wav2vec2 Models: 

Base 12 768 8 5 x 10-4 95M 

Large 24 1024 16 3 x 10-4 317M 

 

For finetuning, we use a learning rate of 1 x 10-5 for all Whisper 

finetuning experiments. Wav2vec2-base was finetuned with a 

learning rate of 1 x 10-4 , while wav2vec2-large was finetuned 

with a learning rate of 2.5 x 10-5, consistent with [3].  Finetuning 

both approaches involve training the final layer of the models 

and freezing all others, as described by the respective authors. 

Finetuning parameters were kept the same as provided in 

Whisper [4] and wav2vec2 [3]. The Whisper model undergoes 

 

 
1Whisper Implementation: https://github.com/huggingface/community-
events/tree/main/whisper-fine-tuning-event 
2 Wav2vec2 Fairseq: https://github.com/facebookresearch/fairseq/ 

finetuning by minimizing the cross-entropy objective function, 

whereas wav2vec2 is finetuned by minimizing the CTC loss. 

3. Corpus Description 

The authors of Whisper [4] do not mention the datasets used. 

However, these trained models achieved SOTA results on many 

different adult speech ASR datasets [4]. For our work, we use 

three different child speech datasets and one adult speech 

dataset: MyST Corpus [24], PFSTAR dataset [25], CMU Kids 

dataset [26] and LibriTTS dev-clean dataset [30].  The datasets 

are kept consistent with previous research [27] on wav2vec2 to 

provide objective comparison with the Whisper models.  

3.1. Dataset Cleanup 

All the labeled data was cleaned as per the guidelines mentioned 

by the authors of Whisper [4]. The abbreviations, punctuations, 

white spaces, and other non-alphanumeric characters were 

removed, and all the characters were changed to lowercase. 

Audio data was modified to have a 16Khz sampling rate and be 

16-bit mono channel. The ‘dev-clean’ subset of LibriTTS [30], 

containing 9 hours of audio is used to provide an evaluation of 

our experiments on adult speech. My Science Tutor (MyST) 

Corpus [24] is an American English child speech dataset 

containing over 393 hours of child speech, of which 197 hours 

are fully transcribed. The dataset was cleaned and prepared as 

mentioned in [27], with 65 hours of clean child speech divided 

into two subsets: 55 hours for training and 10 hours of testing. 

PFSTAR [25] includes a collection of words spoken by British 

English children and contains a total of 12 hours of audio. 10 

hours of this data was used for training and 2 hours was held 

out for inference. CMU Kids [26] corpus was used for 

validation-only, which contains 9 hours of read-aloud sentences 

by children recorded at Carnegie Mellon University. While 

these may not be very big speech datasets, they currently 

represent the best publicly available child speech datasets.  

3.2. Dataset Usage 

The datasets were divided according to their usage for ‘training’ 

and ‘inference’. This information is summarized in Table 2.   

Table 2: Dataset usage  

Usage Dataset Duration 

Finetuning 

(Training) 
MyST_55h 55 hours 

PFS_10h 10 hours 

 
Inference 

(Testing) 

dev-clean 9 hours 

MyST_test 10 hours 

PFS_test 2 hours 

CMU_test 9 hours 

4. Experiments and Results 

4.1. Codebase 

The Whisper implementation used is provided here 1 . The 

fairseq2  implementation of wav2vec2 is used for finetuning 

experiments. Our trained Whisper models are available to use 

on the HF platform3.  The relevant information regarding model 

training, hyperparameters, graphs/metrics, checkpoints, and 

dataset availability are made available on our GitHub4. 

3 Finetuned Whisper models: https://huggingface.co/rishabhjain16 
4 GitHub: https://github.com/C3Imaging/whisper_child_speech  
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4.2. Experiments 

In our first set of experiments (see Section 4.3.1), the original 

Whisper models were evaluated on different child speech 

datasets mentioned in Table 2. The models are categorized 

based on their size: Tiny, Base, Small, Medium, Large, and 

Large V2 (see Table 1). ‘Large-V2’ was trained for 2.5X more 

epochs as compared to ‘Large’, while also adding extra 

parameters for regularization [4]. There are two versions of 

each model: one trained with multilingual data and one 

specifically for the English language only (indicated by ‘.en’ in 

the name). ‘Large’ and ‘Large-V2’ models don’t have English-

only models. Figure 1 shows a plot comparing Word Error Rate 

(WER) on 12 English adult speech datasets against model 

parameters (as provided by Whisper[4]). As expected, lower 

WER values are obtained using models with more parameters. 

We also perform a similar comparison using our child speech 

datasets (more in section 4.3).  

 

Figure 1: Whisper Parameters vs. WER on adult speech 

datasets (from [4]).  

The second set of experiments (see Section 4.3) involved 

finetuning these Whisper models with child speech. Three 

models with the best performance from the first set of 

experiments are selected for further finetuning. We finetuned 

each of the selected models up to 4000 epochs. We select the 

best performing checkpoints from among the trained models, 

which shows the lowest WER while training. Finetuning 

included three experimental configurations of training data: 

MyST_55h, PFSTAR_10h, and MyST_55h+PFSTAR_10h 

combined. These finetuning experiments were kept consistent 

with previously reported wav2vec2 finetuning experiments [27] 

in order to compare both models trained with a similar 

distribution of finetuning data. The wav2vec2 ‘base’ and ‘large’ 

models are used for finetuning, which are pretrained with 960 

hours of Librispeech data [31], and 60,000 hours of Librilight 

data [32], respectively. The difference in their parameters sizes 

can be seen in Table 1.  This comparison is provided to see how 

supervised and self-supervised approaches behave with child 

speech.  

4.3. Results and Discussion 

4.3.1. Whisper Original (No-Finetuning):  

Table 3 provides the WER results on the inference datasets 

using different original Whisper models from the first set of 

experiments. These models are provided by the authors [4] and 

no initial finetuning was performed over these models. It can be 

observed that the models with larger numbers of parameters 

generally perform better. Among the models with the same 

number of parameters, the English models perform better than 

the multilingual models, suggesting that training on language-

specific data can improve performance for that language. The 

lowest WER achieved are highlighted in Table 3.  

Table 3: WER for different Whisper and Wav2vec2 models 

(without finetuning) on child speech (MyST, PFSTAR and 

CMU Kids) and adult speech (dev-clean) datasets. 

Models MyST_ 
test 

PFS_ 

test 

CMU_ 
test 

dev-

clean 

Tiny  40.09 159.57 30.63 10.85 

Tiny.en  33.02 47.11 27.32 8.62 

Base  32.14 100.07 25.03 8.14 

Base.en  29.15 45.70 20.75 7.18 

Small  26.22 111.75 18.52 6.43 

Small.en  26.72 39.00 16.82 6.06 

Medium  25.11 80.97 12.67 5.58 

Medium.en  28.06 35.25 14.00 6.20 

Large  25.24 84.52 13.70 5.53 

Large-V2  25.00 73.68 12.69 5.40 

w2v2-base (LS_960)  15.41 11.20 16.33 3.40 

w2v2-large (LL_60k)  12.50 8.56 14.85 3.28 
Note: ‘.en’ respresents the English-only trained models, while all others represent the 

multilingual models. For example, ‘Tiny’ contains both English and other multilingual 

training data while ‘Tiny.en’ contains only English speech. Wav2vec2 results presented 

for comparison are taken from previously presented work on wav2vec2 for child ASR 
[27]. The ‘w2v2-base’ is pretrained with 960 hours of Librispeech data (LS_960) and 

‘w2v2-large’ is pretrained with 60k hours of Librilight data (LL_60k). Both models 

were finetuned using Librispeech for providing a comparison with non-finetuned 

Whisper models. The WER reported in Table 3 uses zero-shot setting.  

These models achieved positive results on multilingual adult 

speech without the need to perform data-specific finetuning 

(see Figure 1), however, the performance seems poor for child 

speech, despite Whisper stating that their models generalize 

well to standard benchmarks in a zero-shot transfer setting 

without the need for any finetuning. We use these experiments 

as a baseline for further finetuning. The models with lowest 

WER were chosen (‘Medium’, ‘Medium.en’ and ‘Large-V2’) 

for providing further finetuning with child speech.  

4.3.2. Whisper Finetuning with Child Speech 

The Whisper finetuning experiments include three subsets of 

experiments: finetuning with MyST_55h, PFSTAR_10h and a 

combination of both datasets. Table 4 shows the WER of the 

selected finetuned models using these subsets. During 

finetuning, cross entropy loss is minimized by training only on 

the last layer and freezing all other layers, allowing the model 

to classify target tokens from a predefined vocabulary.  

Table 4: WER on inference (test) datasets for different 

Whisper and wav2vec2 models finetuned on MyST, PFSTAR 

and MyST+PFSTAR-combined datasets. 

ID Models  MyST_ 

test  

PFS_ 

test  

CMU_ 

test  

dev-

clean  

MyST (55 Hours) Finetuning: 

1 Medium  11.66  19.76  16.84  5.62  

2 Medium.en  11.81  17.83  15.07  6.48  

3 Large-V2  12.28  10.88  15.67  4.82  

4 w2v2-base 8.13 14.77 16.47 7.72 

5 w2v2-large 7.51 12.46 15.25 6.43 

PFSTAR (10 Hours) Finetuning: 

6 Medium  16.18  3.15  16.57  5.33  

7 Medium.en  15.84  3.14  15.53  5.28  

8 Large-V2  15.79  2.88  15.22  5.10  

 9 w2v2-base 31.86 3.48 27.49 13.95 

10 w2v2-large 27.17 3.50 21.35 11.60 

MyST (55 Hours) + PFSTAR (10 Hours) Finetuning: 

11 Medium  12.22  2.98  16.05  5.40  

12 Medium.en  12.33  3.32  15.08  4.88  

13 Large-V2  13.34  4.17  17.11  4.97  

14 w2v2-base 7.94 2.91 15.97 7.64 

15 w2v2-large 7.42 2.99 14.18 5.79 
Note: Wav2vec2 results are taken from [27]. The ‘w2v2-base’ represents wav2vec2 base 

model while ‘w2v2-large’ represents wav2vec2 large models.  
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Finetuning with MyST_55h showed a significant improvement 

in the WER of MyST_test and PFS_test. However, CMU_test 

dataset had a 2% increase in WER, as shown in Table 4. WER 

on dev-clean adult speech dataset also decreased by 1%.  

Finetuning with PFS_10h also had a significant improvement 

on MyST_test and PFS_test. The WER on both test sets 

decreased; however, the improvement in WER on the 

MyST_test is not as good as when the models are finetuned with 

MyST_55h. CMU_test had a 2% increase in WER,  similar to 

MyST_finetuning. Large-V2 Whisper model gave the lowest 

WER on all four inference data setups, with WER on PFS_test 

dropping to 2.88. When both MyST_55h and PFS_10h were 

used for finetuning, the WER on both MyST_test and PFS_test 

dropped significantly. It can be observed that for a dataset used 

in finetuning, the model shows an improvement in performance 

on datasets with similar distribution at inference time.  

 

The following observations were seen in all finetuning 

experiments: Whisper finetuned models yield better results than 

Whisper original models, regardless of dataset distribution, but 

a finetuning dataset that matches the distribution of the test 

dataset can improve performance. CMU_test showed an 

increase in WER regardless of the finetuning setup and 

remained in the range of 15-17%. This could imply that CMU 

Kids might be a noisy dataset which doesn’t work well for ASR. 

The WER of dev-clean adult speech further decreased after 

child speech finetuning and stayed in the range of 4-5% for all 

experiments.  

4.3.3. Whisper vs Wav2vec2:  

We compare Whisper models with wav2vec2 finetuned models 

on the same datasets. Table 3 and Table 4 cover the various 

wav2vec2 finetuning results on different child speech datasets. 

We first compare Librispeech-finetuned ‘base’ and ‘large’ 

wav2vec2 models with the original Whisper ‘Medium’ and 

‘Large’ models (See Table 3). This was done to maintain 

consistency with the comparison mechanism as provided by 

authors of Whisper [4]. The wav2vec2 models finetuned with 

Librispeech generally performed better on child speech 

compared to any of the Whisper models without finetuning. 

Both these models were used to provide a usecase of ASR over 

unseen child speech in low resource data scenario. Wav2vec2 

results show the lowest WER on all inference datasets except 

CMU_test. However, Whisper models gave lower WER on 

CMU_test as compared to wav2vec2 models. This implies that 

CMU kids dataset could have acoustic properties similar to 

adult speech since supervised finetuning using Whisper 

decreases the WER on CMU_test.  

 

The results of the experiments with child speech finetunings 

show that wav2vec2 finetuning using MyST_55h resulted in 

lower WER compared to Whisper finetuning on MyST_test. 

However, an increase in WER was observed on PFS_test and 

dev-clean for wav2vec2 finetuning. Both Whisper and 

wav2vec2 finetuned models had a WER range of 14-16% on 

CMU_test. For PFS_10h finetuning, similar results were 

obtained for both wav2vec2 and Whisper models on PFS_test, 

with WER of 3.48 and 2.88, respectively. However, high WERs 

were observed on all other inference datasets. These results 

suggest that wav2vec2 finetuning generalizes well for datasets 

with a similar distribution, while Whisper finetuning works best 

for unseen datasets at inference time. When both MyST_55h 

and PFS_10h were used for finetuning, the lowest WER was 

observed with wav2vec2 finetuning across all child speech 

datasets as compared to Whisper finetuning. Both Whisper and 

wav2vec2 models behaved similarly when finetuned with a 

combination of child speech datasets, but wav2vec2 performed 

better on datasets with similar distributions as the seen datasets. 

Moreover, when considering the amount of training data and 

model size (model 13 vs model 14), it was observed that the 

wav2vec2 model 15 (60k hours, 317M parameters) performed 

better than Whisper model 13 (680k hours, 1550M parameters), 

which were finetuned with the same amount of child speech 

data. These findings demonstrate that wav2vec2 performs well 

with child speech and slightly outperforms Whisper.  

5. Conclusions 

In this paper, we use the recent SOTA large-scale supervised 

Whisper models for experimental analysis over different child 

speech datasets. The study of different combinations of 

finetuning over child-specific datasets is also presented in this 

paper. Finetuning Whisper models achieved significant 

improvements in accuracy of child speech recognition. We also 

present comparisons with the SOTA self-supervised, wav2vec2 

model. Finetuning both Whisper and wav2vec2 improves 

performance of child ASR. While Whisper improves ASR 

performance for both adult and child speech, regardless of the 

finetuning dataset, wav2vec2 model performs better with 

finetune-specific datasets. Although Whisper may be more 

appropriate for unseen datasets, wav2vec2 is a better choice for 

real-time, task-specific applications. In addition, the use of 

smaller-sized models, such as wav2vec2, would be more 

feasible for deployment on edge devices, which is also using 10 

times less training data than Whisper. For future work, we aim 

to further study this methodology by including more low 

resource datasets (both adult and child), different ASR 

decoding strategies and deploying these models on edge 

devices.  
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