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Abstract
Unsupervised word learning from unlabeled speech is a funda-
mental problem in zero-resource speech processing, which en-
ables dialogue agents to learn new words directly from spoken
utterances. The embedded segmental K-means (ES-KMeans)
is a representative unsupervised word segmentation method.
However, it has a heterogeneous structure consisting of word
boundary search based on Dynamic Programming, segment em-
bedding, and K-Means clustering, which prevents unified opti-
mization. This paper proposes an end-to-end neural network
version of the ES-KMeans model. We apply the memory net-
work to hold a dictionary of word embeddings and realize the
word boundary search and the clustering respectively as for-
ward and backward propagations. Moreover, we replace the
fixed embedding function of the original method with a learn-
able neural network. Experimental results using the ZeroSpeech
Challenge 2020 package show the proposed approach provides
superior performance to the state-of-the-art methods.
Index Terms: unsupervised word segmentation, spoken term
discovery, memory network

1. Introduction
In contrast to humans who learn spoken dialogue earlier than
reading characters [1, 2], existing spoken dialogue agents (or
systems) first need a large amount of labeled speech data to
learn languages by supervised learning. While supervised learn-
ing is efficient given the labeled data, it requires an enormous
development cost that is only affordable to limited applications
in major languages. Moreover, the agents can not automati-
cally adapt to language variations and changes through conver-
sations lacking the ability to learn directly from spoken utter-
ances, which is essential for flexible open dialogues.

Several techniques have been proposed that contribute to re-
laxing or removing the limitations. Unsupervised speech recog-
nition trains speech recognition system using unpaired speech
and text given a pronunciation dictionary or a text phonem-
ization tool [3, 4]. Some end-to-end spoken language under-
standing approaches for classification-type tasks shrink the tra-
ditional pipeline of a speech recognition system and a natural
language understanding module (NLU) by directly processing
the audio input removing the requirement of the trained speech
recognizer [5, 6].

An approach to creating a general spoken dialogue agent
that can directly learn from raw audio is first to learn pseudo
units of phones or words and then make a language model on
them [7, 8]. Learning phone-like units has the advantage that
learning from raw audio is relatively easy since we do not need
to consider a longer temporal structure. On the other hand,
learning word-like units is ideal for modeling sentences since

words are meaning units corresponding to visual objects, etc.
The larger granularity is also advantageous in generating sen-
tences.

Unlike character sequence segmentation, matching acoustic
segments is not trivial. Therefore, some unsupervised segmen-
tation methods only find unit boundaries in the input continuous
audio signals and do not make a dictionary [9]. Making a dic-
tionary requires labeling of variable length segments in addition
to finding acoustic boundaries [10, 11, 12].

The embedded segmental K-means (ES-KMeans) [10] is a
representative unsupervised word segmentation method that can
make the dictionary. It alternatively performs word boundary
search based on Dynamic Programming given a dictionary of
word embedding vectors and K-Means clustering to update the
dictionary. It uses a heuristically designed embedding function
to map variable length segments to fixed dimensional embed-
ding vectors, where a segment is down-sampled and flattened
to a vector. Instead of considering all possible word bound-
aries at the acoustic frame level, it takes candidates of word
boundaries as the input to assist the boundary search. While
the original method uses syllable segmentation based on am-
plitude envelope [13] to obtain boundary candidates, extension
methods [14, 15] use other units such as phonemes based on
the similarity of acoustic feature vector frames and the units
found by wav2vec 2.0 [16]. While ES-KMeans is based on an
approximation of the Bayesian approach and has a clear objec-
tive function, the algorithm is heterogeneous, consisting of the
boundary search, segment embedding, and K-Means clustering,
which prevents unified optimization. With the fixed embedding
function, the learned dictionary would remain sub-optimal. It
also makes the implementation complex when we want to use it
as a sub-component of other systems, such as a dialogue agent.

The implementation problem is partially addressed by
vector-quantized neural networks [17, 18] and neural network
based Dynamic programming [19, 20] by realizing the dictio-
nary and Dynamic programming as neural networks. By in-
tegrating all the components by a neural network, affinity for
neural network based other systems is improved.

The vector-quantized neural network in [17] is an applica-
tion of the memory networks [21] and holds the vector quan-
tization codebook as a learnable memory module. It performs
the vector quantization using the input continuous acoustic vec-
tor as the query and the memory elements as the keys and val-
ues, and obtains the quantized representation of the input. Dur-
ing the training using the reconstruction error or the prediction
loss [22] as the learning objectives, the codebook is optimized
as a part of the whole network. Using the trained codebook
as a phone dictionary, assuming that the change of the acous-
tic vector is small inside a phone, [18] searches phone bound-
aries using Dynamic Programming as a generalization of the
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approach of [23]. The search process is the same as that of the
ES-KMeans method. The limitations of these methods are that
they are only useful for short units like phones, as reported in the
paper. Because they do not model the internal temporal struc-
ture of the units, they can not handle longer units like words.
Also, unlike the ES-KMeans, the phone dictionary is fixed af-
ter the initial learning and not updated using the segmentation
results.

This paper proposes an end-to-end neural network version
of the ES-KMeans model for unsupervised word learning ex-
tending the vector-quantized neural networks by introducing a
neural network-based learnable segment embedding function
that models the temporal structure of words. We integrate all
the algorithm components in an end-to-end neural network, in-
cluding the Dynamic Programming based boundary search 1.
The proposed method has a unified optimization structure use-
ful for holistic optimization and a more straightforward imple-
mentation that is easy to extend. We evaluate our method using
the ZeroSpeech Challenge 2020’s evaluation package and show
our proposed method outperforms the state-of-the-art methods.

2. Embedded segmental K-means
Given a feature vector sequence of a continuous utterance
X = ⟨x1, x2, · · · , xT ⟩, ES-KMeans algorithm aims to break
it down into a sequence of meaningful segments or words
W = ⟨w1, w2, · · · , wL⟩ and cluster them. It iteratively opti-
mizes segmentation Q and clustering Z , where T is the number
of frames, and L is the number of words in the utterance. The
overall optimization objective is:

H(Q,Z) =
K∑

c=1

∑

w∈WQ
c

len (w) ∥fe (w)− µZ
c ∥2, (1)

where K is the number of clusters, WQ
c is a set of segments by

Q assigned to cluster c by Z , len (w) is segment length of w,
and µZ

c is c-th cluster centroid of Z . An embedding function
fe(·) maps a variable-length segment to a fixed dimensional
vector, which is implemented by down-sampling. ES-KMeans
algorithm iteratively optimizes segmentation Q and clustering
Z while fixing one of them.

Given a fixed clustering Z , the objective (1) becomes:

H(Q) =
∑

w∈WQ
d(w) =

∑

w∈WQ
len(w)∥fe (w)− µZ

c (w)∥2,

(2)
where WQ is a set of all segments by Q, d(w) is a word seg-
ment score and µZ

c (w) is the cluster centroid of Z closest to
fe (w). Let γ [t] = H (Q∗

t ) be the optimal segmentation score
for a partial utterance up to t-th frame Xt = ⟨x1, x2, · · · , xt⟩.
Using Dynamic Programming, the optimal segmentation score
of the entire utterance H (Q∗

T ) = minQ H(Q) = γ [T ] is
efficiently obtained by recursively applying Equation (3) from
t = 1 to T .

γ [t] =
t

min
j=1

{d (wt−j+1:t) + γ [t− j]} , (3)

where wt−j+1:t is a segment starting at frame t−j+1 and end-
ing at t, and γ [0] = 0. By backtracking the recursion process,
the optimal L and segmentation Q∗ = Q∗

T are obtained.

1The code is available at https://github.com/tttslab/
nn-eskmeans.

Algorithm 1 NN-ES-KMeans algorithm
1: Input: feature vectors X = ⟨x1, x2, · · · , xT ⟩,

initial encoder weights θenc

2: Randomly initialize segmentation Q
3: Initialize codebook V by k-means++
4: while not converge do
5: Compute minQ H(Q)

(calculate Ls by forwardpropagation)
6: Update V and θenc by backpropagation
7: end while

Under the fixed segmentation Q, the clustering Z is per-
formed by the standard K-means method, which determines the
segment assignments and updates the cluster mean. The process
of the segmentation and the clustering is repeated until it con-
verges.

3. Proposed method
3.1. Basic algorithm

We reformulate the ES-KMeans and implement it as an end-to-
end neural network. In the original ES-Kmeans, the entity of the
clustering Z is a set of cluster means {µZ

c }Kc=1. In our proposed
method, we replace it with an array of vectors V = {vc}Kc=1

used as keys and values of a memory network, where the vector
vc is an embedded representation of a word. We refer to V as a
dictionary of word embeddings. The segmentation objective is
the same as Equation (2) except for the term µZ

c (w), which is
replaced by vc(w) as shown in Equation (4).

H(Q) =
∑

w∈WQ
len (w) ∥fe (w)− vc(w)∥2, (4)

where vc(w) is the dictionary entry closest to the embedding
representation of the word w. We select the dictionary entry
vc(w) by using fe (w) as a query in the memory network and
making a hard decision in the query-key matching. We compute
a one-hot weight vector for the hard decision by finding a min-
imum Euclidian distance between the keys and the query. We
obtain the optimal segmentation score H(Q∗) by the recursive
calculation of Equation (3) implemented as a forward propaga-
tion of a neural network.

While the original ES-KMeans uses heuristically designed
fixed embedding function fe(·), we use Long Short Term Mem-
ory (LSTM)[27] encoder as a learnable embedding function as
shown in Equation (5) for improved word learning.

fe(wt:t+I) = yt+I , (5)

where (wt:t+I) is an input segment starting at time t, I is the
length of the segment, and yt+I is the final output of the LSTM.
We pretrain the LSTM encoder by forming a sequential autoen-
coder connecting a LSTM decoder to the output of the LSTM
encoder and train it using a set of randomly split segments so as
to minimize the reconstruction loss.

We form a single end-to-end neural network connecting the
memory network, the Dynamic Programming network, and the
LSTM-based embedding function, and train it using the optimal
segmentation score H(Q∗) as the loss function Ls. The word
embedding vectors in V are updated by the backpropagation as
a part of the end-to-end network, corresponding to the cluster
centroid update in the original ES-Kmeans method. The for-
ward and backward propagations are alternatively iterated for
multiple epochs, just as in regular neural network learning.
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Table 1: Results for the three languages. P = Precision, R = recall, F = F-score.
Boundary Token Type

English P R F P R F P R F
SylSeg+ES-KMeans[10] 51.0 55.4 52.7 13.0 14.1 13.5 8.3 16.7 11.1
PhnSeg+ES-KMeans[14] 26.4 41.0 32.2 5.0 8.0 6.2 4.5 9.4 6.1

wav2vec2.0+ES-KMeans(iterative)[15] 29.4 67.6 41 6.4 13.3 8.6 4.2 11.7 6.1
Self-Expressing-Autoencoder [24] 32.5 78.9 46.1 5.8 16.8 8.6 2.1 24.1 3.9

seq2seq-RNN[25] 37.7 63.9 47.4 6.1 11.1 7.9 2.5 27.1 4.5
PDTW[26] 29.4 85.2 43.7 2.2 27.8 4.1 3.5 14.2 5.6

NN-ES-KMeans 46 70.1 55.6 14.1 18.2 15.9 4.5 16.7 7.1
NN-ES-KMeans+sampling 45.9 64.6 53.7 13.4 16 14.6 4.5 20.5 7.3

French Boundary Token Type
SylSeg+ES-KMeans[10] 37.8 41.6 39.6 3.5 3.9 3.7 3.1 6.3 4.2
PhnSeg+ES-KMeans[14] 25.4 38.4 30.6 4.8 7.6 5.9 4.2 7.9 5.5

wav2vec2.0+ES-KMeans(iterative)[15] 30.1 61.2 40.4 6.1 11 7.8 3.7 9.6 5.3
Self-Expressing-Autoencoder [24] 34.0 83.9 48.4 5.5 17.2 8.3 2.6 16.2 4.5

seq2seq-RNN[25] 39.2 72.4 50.9 6.3 12.6 8.4 3.1 22.5 5.5
PDTW[26] 31.6 86.4 46.3 2.8 30.1 5.1 4.6 9.1 6.1

NN-ES-KMeans 39.6 74.3 51.6 9.1 15.2 11.4 4.5 6.3 5.2
NN-ES-KMeans+sampling 42.4 72.5 53.5 10.5 15.8 12.6 5.2 8.8 6.5

Mandarin Boundary Token Type
SylSeg+ES-KMeans[10] 36.5 47.1 41.1 2.5 3.4 2.9 2.5 4.1 3.1
PhnSeg+ES-KMeans[14] 43.8 66.8 52.9 6.9 11.5 8.7 7.7 10.4 8.8

wav2vec2.0+ES-KMeans(iterative)[15] 43.8 71.4 54.3 13.7 22.7 17.1 15.3 23.3 18.5
Self-Expressing-Autoencoder [24] 36.5 91.9 52.2 7.9 25.4 12.1 6.9 29.1 11.1

seq2seq-RNN[25] 42.5 80.7 55.7 9.3 18.1 12.3 8.4 28.9 13.0
PDTW[26] 34.2 87.4 49.2 2.4 23.9 4.4 10.3 11.2 10.7

NN-ES-KMeans 53.2 93.6 67.9 19.1 30.5 23.5 13.9 14 13.9
NN-ES-KMeans+sampling 55 69.5 61.4 18.8 18.5 18.7 16.3 28.4 20.7

Table 2: Ablarion study on Mandarin
min features fe(·) pretrain commit. loss enc. undate epoch Boundary-F Token-F Type-F

(1) det. CPC LSTM ✓ ✓ ✓ 250 67.9 23.5 13.9
(2) rand CPC LSTM ✓ ✓ ✓ 300 61.4 18.7 20.7
(3) det. CPC LSTM ✓ ✓ ✓ 0 58.1 15.4 11.5
(4) det. CPC LSTM ✓ ✓ ✓ 100 63.9 20.1 14
(5) det. MFCC LSTM ✓ ✓ ✓ 40 59.3 17.5 9.9
(6) det. MFCC downsample - - - 50 52.9 7.9 11.6
(7) det. CPC LSTM - ✓ ✓ 120 56.8 13.8 13.8
(8) det. CPC LSTM ✓ - ✓ 100 64.2 19.1 13
(9) det. CPC LSTM ✓ ✓ - 400 61.4 17.8 11.7

(10) rand CPC LSTM ✓ ✓ - 150 61.4 17.9 13.5

Algorithm 1 summarizes the whole process of the pro-
posed method. As the initialization of Q, we make a random
segmentation. Based on the random segmentation, we initial-
ize the dictionary V using the initialization algorithm of K-
means++[28]. Then we alternatively repeat the calculation of
H(Q∗) = minQ H(Q) by the forward propagation based Dy-
namic Programming and the update of V and θenc by the back-
propagation until it converges.

3.2. Commitment loss

We train the network so that the embedded representation
fe (w) and the dictionary entry vc(w) become closer. However,
if the embedded representations approach to the dictionary en-
tries faster than the dictionary entries appropriately distribute,
the learning process might prematurely converge. To control
the balance of the learning speed between the embedding func-
tion and the dictionary elements, we add a commitment loss to

Equation (4) as in [29] as shown in Equation (6).

Ls = H(Q) =
∑

w∈WQ∗
{len (w) ∥sg[fe (w)]− vc(w)∥2

+α · len (w) ∥fe (w)− sg[vc(w)]∥2}, (6)

where sg[·] is an operator that indicates skipping the weight
update. The first and the second terms contribute to the updates
of the dictionary entries and the encoder, respectively, and α
controls their balance.

3.3. Sampling

In the basic algorithm, we make deterministic decisions with
the min(·) function for the dictionary element selection and
the Dynamic Programming. However, we might be caught in a
local minimum since we likely repeat the same selection. As an
extension, we replace the deterministic min(·) operation with
random samplings using the Gumbel-Max trick[30].
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The new equation for the Dynamic Programming in Equa-
tion (3) becomes Equation (7).

γ [t] = d (wt−s+1:t) + γ [t− s] ,

s = arg max
j

[−{d (wt−j+1:t) + γ [t− j]}/τQ + gj ],

(7)

where τQ is temperature, gj = −log(−log(u)), and u is a
sample form a uniform distribution Uniform(0, 1). Similarly,
the new equation for vc in (8) becomes as in Equation (8).

vc(w) = arg max
vj

[−{∥fe (w)− vj∥2}/τZ + gj ], (8)

where τZ is temperature.

4. Experimental Setup
We evaluated our proposed method with the Zero Resource
Speech Challenge 2020’s 2017 Track 2 task using the official
package released in their website [31]2 . The package provides
data sets of three languages of English, French, and Chinese.
Their speech data amount to 45, 24, and 2.5 hours. In the
evaluation, Boundary, Token, and Type accuracies are mea-
sured [32]. The boundary accuracy evaluates the start and end
boundaries individually, the Token accuracy sees the pair of the
start and end boundaries of each segment, and Type accuracy
measures the accuracy of the obtained vocabulary.

As the acoustic features, we used CPC features [33] using
the CPC audio toolkit3. The pre-training of the LSTM encoder
and the training of the neural ES-KMeans took around 100 and
13 hours using NVIDIA RTX3090 GPU. We chose the hyper-
parameters based on a preliminary experiment using the Man-
darin data set. With the minimum segment length, 150 ms gave
the best results among 50, 100, 150, and 200 ms. Similarly, the
dictionary size K = 500 gave the best among 250, 500, 1000,
2500, and 5000. The temperatures τQ = 2 and τZ = 0.1 were
the best among 0.1, 0.5, 1.0, 2.0, and 3.0. We used the same
hyper-parameter settings for all three languages.

5. Results
Table 1 show the results for the three languages. Among
the baselines, SylSeg+ES-KMeans, PhnSeg+ES-KMeans, and
wav2vec2.0+ES-KMeans(iterative) are families of the ES-
KMeans method that use syllable segmentation (the original
method), phonetic segmentation, and wav2vec2.0 to obtain
the word boundary candidates. Others (i.e., Self-Expressing-
Autoencoder[24], seq2seqRNN[25], and PDTW[26]) are non
ES-KMeans methods. NN-ES-KMeans is the proposed
method using the deterministic min function and NN-ES-
KMeans+sampling is the one using the sampling version.

While the scores of all the methods tend to vary depending
on the languages, the proposed methods outperformed all the
existing methods in Boundary and Token F-scores. For the Type
F-score, the original ES-KMeans provided the best score for En-
glish but NN-ES-KMeans+sampling gave the best for French
and Mandarin. When we compare NN-ES-KMeans+sampling
with NN-ES-KMeans, The Boundary and Token F-scores de-
creased slightly, but Type-F improved for all the languages.
The sampling contributed to finding more word types in the

2https://zerospeech.com/challenge_archive/
2020/tasks/

3https://github.com/tuanh208/CPC_audio

dictionary but also increased broken segment instances due to
the introduced randomness. The averaged Boundary, Token,
and Type F-scores over the three languages by the original ES-
KMeans method were 44.5, 6.7, and 6.1, and those for the NN-
ES-KMeans and NN-ES-KMeans+sampling were 58.5, 16.9,
and 8.8, and 56.2, 15.3, and 11.5, respectively, which were sig-
nificantly superior to the original version.

6. Ablation study
We performed an ablation study using the Chinese data set for
analysis. Table 2 shows the results. The epoch column shows
the best number of training epochs after the initialization except
for lines (3) and (4), where we specified 0 and 100 epochs to see
the performance change. The first line (1) is NN-ES-KMeans,
and the second line (2) is NN-ES-KMeans+sampling, and these
are the same as the ones shown in Table 1. By comparing (3),
(4), and (1), we observe the F-scores gradually improve with the
increase of the epochs. Comparing (1) and (5) shows that CPC
features are more effective than MFCC. When using the MFCC
features, the LSTM encoder (5) gave slightly worse Type F-
score but largely better Boundary and Token F-scores than the
downsampling (6). Removing pretraining (7) and commitment
loss (8) reduced the Boundary and Token F-scores, but the in-
fluence on Type-F was minor. There were no significant dif-
ferences between the deterministic decision (9) and the random
sampling (10) in the Boundary and the Token-Fscore when the
encoder was not updated, but the random sampling improved
the Type F-score.

7. Limitations of the work
The proposed method has a learnable embedding function.
While it is useful to improve performance, it increases the com-
putation cost since we can not pre-compute the embedding rep-
resentations of possible segments as the embedding function
changes with the learning. The training objective score largely
improves when we initialize the dictionary entries by oracle
word segments even after significant training epochs, which im-
plies the optimization process has room for improvement.

8. Conclusions
We have proposed an end-to-end neural network version of the
ES-KMeans method. It integrates all the components of the
original ES-KMeans in a single neural network and replaces the
fixed segment embedding function with a learnable neural net-
work module. It realizes the segmentation and the clustering of
the original ES-KMeans by the forward and backward propaga-
tion, which makes it easy to add extensions or use the method
with other neural network-based systems. Experimental results
show that the proposed methods outperform existing state-of-
the-art approaches with Boundary, Token, and Type F-scores
in most conditions. When we introduced the sampling using
the Gumbel-Max trick for the dictionary element selection and
the Dynamic Programming calculation, Boundary and Token F-
scores slightly decreased due to the introduced randomness, but
an improved Type F-score was obtained. Future work includes
extending word dictionary learning by combining it with lan-
guage model learning.

9. Acknowledgements
This study was supported by JSPS KAKENHI Grand Number
JP22K12069.

489



10. References
[1] The Cambridge Handbook of Child Language, 2nd ed., ser. Cam-

bridge Handbooks in Language and Linguistics. Cambridge Uni-
versity Press, 2015.

[2] E. Dupoux, “Cognitive science in the era of artificial intelligence:
A roadmap for reverse-engineering the infant language-learner,”
Cognition, vol. 173, pp. 43–59, 2018.

[3] A. Baevski, W.-N. Hsu, A. Conneau, and M. Auli, “Unsupervised
speech recognition,” in Advances in Neural Information Process-
ing Systems, 2021.

[4] A. H. Liu, W.-N. Hsu, M. Auli, and A. Baevski, “Towards end-
to-end unsupervised speech recognition,” in IEEE Spoken Lan-
guage Technology Workshop (SLT), Doha, Qatar, 2023, pp. 221-
228, 2022.

[5] Y.-P. Chen, R. Price, and S. Bangalore, “Spoken language un-
derstanding without speech recognition,” in 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), Calgary, AB, Canada, 2018, pp. 6189–6193.

[6] S. Dmitriy, Y. Wang, C. Fuegen, A. Kumar, B. Liu, and Y. Bengio,
“Towards end-to-end spoken language understanding,” in 2018
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018, pp. 5754–5758.

[7] K. Lakhotia, E. Kharitonov, Y. A. Wei-Ning Hsu, A. Polyak,
B. Bolte, T.-A. Nguyen, J. Copet, A. Baevski, A. Mohamed, and
et al., “On generative spoken language modeling from raw audio,”
in Transactions of the Association for Computational Linguistics,
vol. 9, 2021, pp. 1336–1354.

[8] R. Komatsu, S. Gao, W. Hou, M. Zhang, T. Tanaka, K. Toy-
oda, Y. Kimura, K. Hino, Y. Iwamoto, K. Mori, T. Okamoto, and
T. Shinozaki, “Automatic spoken language acquisition based on
observation and dialogue,” IEEE Journal of Selected Topics in
Signal Processing, vol. 16, no. 6, pp. 1480–1492, 2022.
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