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Abstract
This paper proposes a method for target vocabulary recogni-
tion based on multi-task learning with decomposed teacher se-
quences. The proposed method first decomposes teacher se-
quences into the target vocabulary and the non-target vocabu-
lary sequences. Then, multi-task learning is performed by cal-
culating losses for both the target vocabulary sequence and the
non-target vocabulary sequence. By utilizing information from
both target and non-target vocabulary, our proposed method
provides more stable training and more accurate recognition of
target vocabulary than single-task learning using only the target
vocabulary. Experiments conducted on the Corpus of Sponta-
neous Japanese (CSJ) dataset, using numerals and katakana as
target vocabulary, demonstrate the effectiveness of our proposed
method. The results show a maximum CER improvement rate
of 27% for katakana and 34% for numerals in target vocabulary
recognition, as well as an 84% reduction in insertion errors in
non-target vocabulary utterances.
Index Terms: speech recognition, connectionist temporal clas-
sification, multi-task learning, target vocabulary recognition

1. Introduction
End-to-end speech recognition has evolved with the develop-
ment of neural networks, and research has been conducted in
various directions [1, 2, 3, 4, 5], including Connectionist tem-
poral classification (CTC) [6, 7, 8, 9, 10], RNN-Transducer [11,
12, 13], and attention-based encoder-decoder architectures [14,
15, 16, 17]. Generally, speech recognition aims to transcribe all
the content included in the input utterance accurately. However,
not all applications require transcription of the entire speech.
In some cases, only specific vocabulary needs to be accurately
recognized, while the rest of the speech can be ignored.

In industrial applications, there are cases where only spe-
cific vocabulary contained in the speech needs to be extracted.
For instance, extracting phone numbers or passwords during
automated telephone answering, or extracting nouns related to
restaurant menus in restaurant reservations. In such applica-
tions, the accuracy of the target vocabulary recognition is cru-
cial, and non-target vocabulary can lead to errors such as inser-
tion, hindering the task. Therefore, the development of tech-
niques that can accurately recognize target vocabulary only can
greatly enhance the efficiency and effectiveness of these appli-
cations.

For improving target vocabulary recognition, keyword spot-
ting [18, 19, 20] can be associated with the task. Many ap-
proaches to keyword spotting involve fine-tuning pre-trained
ASR models to better detect specific keywords. These ap-
proaches are generally focused on detecting specific predefined
keywords, such as wake-up words, and are not well-suited for

Figure 1: Automatic telephone assistance that asks for the
user’s PIN. In this case, content of speech is unnecessary if the
PIN information of the user can be obtained.

detecting any arbitrary keyword that may be included in the tar-
get vocabulary. Some techniques have been proposed that can
detect arbitrary keywords using the query-by-example frame-
work [21, 22]. These techniques allow for the identification of
any keyword, rather than just predefined ones, by using a sam-
ple of the keyword as a reference. However, the model requires
a dataset containing speech with specific vocabulary only, mak-
ing it difficult to train on natural speech datasets. Moreover, the
model needs to estimate the location of keywords in the utter-
ance during inference and may not handle multiple keywords
within a single utterance.

Another related field is end-to-end spoken language under-
standing (SLU), a task of identifying speaker intent, specific
named entities, and grammatical information from speech. Re-
searchers in this field have explored various approaches, in-
cluding the use of Transformer without using automatic speech
recognition (ASR) [23], transfer learning of ASR pretraining
parameters to SLU models [24], and the use of self-supervised
pretraining models as feature extractors [25]. These techniques
can produce rich outputs, extracting information beyond that
of speech recognition only. However, there is little discussion
about the recognition accuracy of the output itself. Additionally,
the process of model training can be complex, often involv-
ing the combination or fine-tuning of pre-trained models with
task-specific datasets. Omachi et al. [26] proposed a method
that adds grammatical-information tags to transcribed labels
and trains an end-to-end ASR model to output both transcrip-
tion and tag information simultaneously. However, this method
requires newly created transcribed labels with added tag infor-
mation for training the end-to-end model, which increases the
difficulty of the task. While this approach is successful in pro-
ducing rich output information, the speech recognition accuracy
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I had like 300 freakin’ awesome dates in Qatar at the start of 2023!!
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Figure 2: Example of target vocabulary (numerals) extraction; (a) applying target vocabulary filtering as post-processing to speech
recognition output, (b) a single-task trained ASR model using only the target vocabulary as teacher data, (c) the proposed multitask
network in which not only the target vocabulary but also the non-target vocabulary is output in parallel. Note that the token ” ”
represents the non-target vocabulary sequence.

is decreased as a result.
We propose a new approach for target vocabulary extrac-

tion that is both efficient and simple. First, this paper sets up
the problem of target vocabulary recognition and discusses the
underlying approach and its challenges. Then, we describe a
novel multitasking network for target vocabulary recognition
that also uses information from non-target vocabulary, which
has not been considered previously. By using both target and
non-target vocabulary information, the proposed multitasking
network is more stable and easy to learn. Experiments con-
ducted on the Corpus of Spontaneous Japanese (CSJ) dataset,
using numerals and katakana as target vocabulary, demonstrate
the effectiveness of our proposed method. The results show
a maximum CER improvement rate of 27% for katakana and
34% for numerals in target vocabulary recognition, as well as
an 84% reduction in insertion errors in non-target vocabulary
utterances.

2. Problem setting
Speech recognition is a technology that maps input audio X ∈
RT×D to a word sequence Y ∈ VL corresponding to its spoken
content, given a vocabulary set V and the sequence length L.
T denotes the number of temporal frames and D denotes the
feature dimension. In this paper, we consider the case where we
want to output only the sequence composed of a specific sub-
vocabulary set, i.e., the target-vocabulary-word sequence Ytgt ∈
Vtgt ⊂ V . Fig. 2 illustrates an example where the numerals are
the target vocabulary.

Fig 2-(a) is the most straightforward approach which is to
apply standard speech recognition with the full vocabulary and
filter the output sequence Ŷ using post-processing techniques
to obtain a sequence Ŷtgt that consists only of the target vocab-
ulary. However, in this approach, errors in speech recognition
propagate to the subsequent filtering stages, leading to accuracy
degradation.

Fig 2-(b) is an end-to-end approach that directly outputs

the sequence Ŷtgt. General keyword spotting is also considered
to be included in this approach. This ASR model can be ob-
tained in single-task training with a new teacher sequence Ytgt

consisting only of the target vocabulary by filtering the original
teacher sequence Y with full vocabulary. One of the limitations
of the approach is that the context of the speech cannot be taken
into account because texts belonging to the non-target vocab-
ulary are discarded. This can lead to recognition errors, espe-
cially insertion errors in utterances that do not contain target
vocabulary, as the models may struggle to differentiate between
similar-sounding words without context knowledge. Further-
more, this approach has problems in the training stage. Because
the models have to learn to differentiate between the target vo-
cabulary and a large number of possible non-target vocabulary
only with Ytgt, which makes it difficult to train the model from
scratch, as the conventional methods often rely on fine-tuning
with the ASR model pre-trained with full vocabulary Y .

3. Proposed Method

In this section, we describe the proposed teacher sequence de-
composition and the multi-task model shown in Fig 2-(c). The
proposed method first decomposes the teacher sequence Y into
two sequences; a target vocabulary sequence Ytgt and a non-
target vocabulary sequence Y−tgt. Then, the ASR model is
trained as a multi-task network for the two sequences.

3.1. Teacher sequence decomposition

The proposed method decomposes the teacher sequence Y into
the target vocabulary sequence Ytgt and the non-target vocabu-
lary sequence Y−tgt. Elements not included in the correspond-
ing vocabulary are replaced by <unk> tokens representing un-
known vocabulary.

Here is an example of a teacher sequence for Japanese when
numerals are set as the target vocabulary.
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� �
Full Vocab. : 私の暗証番号は1582です

(My PIN is 1582)
Target : <unk> 1582 <unk>

Non-target : 私の暗証番号は <unk>です� �
The next example is a teacher sequence when katakana is set as
the target vocabulary.� �

Full Vocab. : カタールではデーツを楽しみましたa

(I really enjoyed dates in Qatar)
Target : カタール <unk>デーツ <unk>

Non-target : <unk>では <unk>を楽しみました

aThe underlined characters are in katakana. カタール repre-
sents Qatar andデーツ represents dates.� �

Katakana is a type of Japanese script that is used primarily for
writing loanwords, foreign names and borrowed words, and
onomatopoeic expressions [27, 28, 29]. It is one of the three
scripts used in written Japanese, alongside hiragana and kanji.
Katakana consists of 46 characters, each representing a syllable,
and is visually characterized by its angular and straight-lined
shapes. The use of katakana can also indicate emphases, such
as when emphasizing certain words in a sentence or advertising.

3.2. Network architecture and loss functions

The network architecture of the proposed method is shown in
Fig 3. In this study, we use a multi-task network in which a
single encoder has multiple CTC decoders for both the target
sequence and the non-target sequence in parallel. We adopt the
Conformer encoder [12] for acoustic encoding and the CTC de-
coder [30] for decoding.

Let us consider an N -layer Conformer encoder. Let
X(0) = X be the input acoustic feature sequence, and let Z(n)

be the output of the n-th layer of the Conformer encoder. The
input and output of each layer are represented as follows:

X(n) = Encoder(n)(X(n−1))(1 ≤ n ≤ N). (1)

The final layer output of the Conformer encoder Z(N) is input to
two types of CTC decoders, which correspond to the sequence
of the target vocabulary and the sequence of the non-target vo-
cabulary, respectively.

Ỹ
(c)
tgt = Softmax(Lineartgt(X

(N))) (2)

Ỹ
(c)
−tgt = Softmax(Linear−tgt(X

(N))) (3)

Here, Lineartgt/−tgt(·) is a linear layer that projects an input
vector to the target/non-target vocabulary space, and Ŷ

(c)
tgt and

Ŷ
(c)
−tgt are estimates of the character sequences of the target and

non-target vocabulary set, respectively. The two types of se-
quences obtained are used to calculate the CTC loss with their
corresponding teacher sequences.

Lctc = λLctc(Y
(c)
tgt , Ỹ

(c)
tgt ) + (1− λ)Lctc(Y

(c)
−tgt, Ỹ

(c)
−tgt). (4)

Here, Y (c)
−tgt is a character sequence corresponding to the word

sequence Y−tgt and λ is a weight parameter for the CTC loss of
the target vocabulary set and its complement set, respectively.

In conventional single-task learning, only Y
(c)
tgt was used

for the loss calculation, and the model could not learn from the

Conformer
Encoder

Linear +
Softmax

Linear +
Softmax

CTC CTC

Target
Sequence

Non-target
Sequence

Figure 3: The proposed multi-task network in which a single
encoder has multiple CTC decoders for both the target sequence
and the non-target sequence in parallel.

information of Y (c)
−tgt, which is outside of the target vocabulary.

This can lead to a vulnerability to insertion errors for non-target
vocabulary sequences during inference, as well as an inability
to capture the difference between target and non-target vocabu-
lary sequences during training, potentially resulting in training
failure.

4. Experiments
We conducted experiments with two different target vocabu-
laries, katakana, numerals, to evaluate the accuracy of target
vocabulary extraction. We used the Corpus of Spontaneous
Japanese (CSJ) dataset and decomposed the original teacher se-
quences with full vocabulary into the target vocabulary and non-
target vocabulary based on morphological analysis.

4.1. Dataset and teacher sequences

The Corpus of Spontaneous Japanese (CSJ) [31] dataset is used
for the experiments. The training data consisted of 403,071 ut-
terances, and the validation data consisted of 4,000 utterances.
We used the official evaluation dataset provided by CSJ for eval-
uation, which consisted of three evaluation sets: Eval1 (1,272
utterances), Eval2 (1,292 utterances), and Eval3 (1,385 utter-
ances), with a total of 3,949 utterances. Eval1 and Eval2 are
recordings of academic presentations, while Eval3 consists of
simulated lectures.

We created new teacher sequences by extracting target vo-
cabularies from the original teacher sequences in CSJ. First,
we performed morphological analysis on all utterances in CSJ
using MeCab [32]. MeCab is an open-source morphological
analysis engine that uses Conditional Random Fields (CRF) for
parameter estimation. Next, we extracted only the words that
MeCab identified as nouns, and then further removed only those
that matched the Unicode of Katakana/numeral using regular
expressions. At this time, the subset that did not match such as
parts of characters other than target vocabularies were labeled
as unknown token <unk>. Note that consecutive non-target
vocabularies are consolidated into a single <unk> token. The
labeling of the non-target vocabulary sequence was performed
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Table 1: CERs for the target vocabulary: katakana and numerals. The single task and the proposed multi-task show both results trained
from scratch and fine-tuned using the ASR model with full vocabulary. Overall, the proposed method shows lower CERs. It can also be
seen that the single task is difficult to be trained from scratch.

Model λ
CER (target: katakana)↓ CER (target: numeral)↓

eval1 eval2 eval3 all eval1 eval2 eval3 all

Training from scratch (random initialization)

ASR + Filtering - 11.55 10.71 9.22 10.77 4.6 5.02 5.04 4.87
Single task - Failed in training (loss diverged)

Multi task
0.25 11.13 10.71 10.23 10.79 3.31 5.82 3.78 4.65
0.5 9.59 10.2 10.29 9.95 7.05 7.66 5.88 7.22
0.75 15.7 14.62 13.35 14.82 3.31 5.01 3.36 4.18

Fine-tuning with pre-trained ASR with full vocabulary

Single task - 10.23 11.16 10.89 10.71 5.04 6.23 5.88 5.75

Multi task
0.25 10.4 10.55 11.61 10.7 3.52 5.52 5.04 4.71
0.5 8.77 10.42 10.23 9.68 3.31 5.41 4.62 4.55
0.75 8.49 10.16 10.17 9.45 3.02 5.92 3.78 4.6

Table 2: Insertion error rate (Ins) for utterances that do not con-
tain katakana when the target vocabulary is katakana. eval1,
eval2, and all show that the proposed method has lower Ins.
The proposed multi-task network is robust for non-target vo-
cabulary.

Model λ
Ins for non-target vocabulary (%)↓
eval1 eval2 eval3 all

Filtering - 0.84 1.8 1.01 1.21
Single task (finetune) - 0.6 1.24 1.01 0.96
Multi task (scratch) 0.5 0.48 0.68 1.38 0.89
Multi task (finetune) 0.75 0.12 0.56 1.57 0.82

by the reverse operation: the target vocabulary was labeled as
<unk>, and the non-target vocabulary was left as teacher se-
quences.

We used the character error rate (CER) of the target vocab-
ulary characters only, as the evaluation metric for each evalu-
ation set. We also calculated the insertion error rate (Ins) for
utterances that do not contain the target vocabulary.

4.2. Network configurations

We used 80-dimensional Mel-spectrogram features as input fea-
tures. SpecAugment [33] was applied for all models.

The encoder layer, the encoder dimension, the convolution
kernel size, and the number of attention heads were set to 18,
512, 31, and 8, respectively. We trained the models with the
Adam optimizer [34] with β1 = 0.9, β2 = 0.98, ϵ = 10−6 and
Noam learning rate scheduler from [35], with 1k warm-up steps
and peak learning rate 0.05 /

√
d where d is the model dimen-

sion in conformer encoder. All models were trained for 100
epochs, and fine-tuned models were performed for an additional
100 epochs using a pre-trained model of the full vocabulary
which is used for the filtering approach.

4.3. Experimental results

Table 1 shows CERs for the target vocabulary with the full-
vocabulary ASR1+filtering approach, the single-task approach,
and the multi-task approach with varying weights of λ. The full-
vocabulary ASR model used for filtering was also fine-tuned to

1The ASR model utilized in this approach demonstrates CERs of
4.9%, 3.5%, and 4.1% for eval1, eval2, and eval3, respectively, in the
full vocabulary recognition, i.e. the conventional ASR task.

obtain results for the single-task learning approach and multi-
task learning approach. Overall, the proposed multitask learn-
ing approach showed lower CER in all experimental settings. In
particular, a significant improvement was observed in the eval1
set, where the proposed approach showed a relative CER im-
provement of 27% for the katakana target and 34% for the nu-
merals target, compared to filtering.

In the single-task learning approach learning from scratch
was not feasible and fine-tuning was required, as discussed in
Sections 2 and 3.2. This is because training from scratch using
only target vocabulary does not allow for the use of information
on non-target vocabulary contained in the training data.

In contrast, the multitask learning approach was found to
be feasible for learning from scratch, although the CER showed
fluctuations depending on the weight λ. Moreover, fine-tuning
further improved the accuracy and helped to stabilize the train-
ing process with small fluctuations observed around the CERs.
The best CER was observed when λ was set to 0.75. This is be-
cause the pre-trained model had already learned representations
for the full vocabulary, and placing a larger weight on the target
vocabulary could enhance the accuracy of target extraction.

Table 2 shows the insertion error rates (Ins) on utterances
containing only non-target vocabulary. This can be seen as a
false alarm rate which can measure the robustness of the system
to non-target vocabulary. Despite some degradation in perfor-
mance on eval3, the proposed multi-task training approach re-
duced the number of insertions by 86% on eval1, 69% on eval2,
and 32% overall on the dataset. This suggests that the proposed
approach was able to capture the differences between target and
non-target vocabulary and improve the recognition of target vo-
cabulary while maintaining robustness to non-target vocabulary.

5. Conclusions
In this paper, we proposed a new approach for target vocabu-
lary recognition based on multi-task learning with decomposed
teacher sequences. By utilizing information from both target
and non-target vocabulary, our proposed method provides more
stable training and more accurate recognition of target vocab-
ulary. The experiments using the CSJ dataset demonstrate that
the proposed method showed improved accuracy compared to
the conventional methods such as target vocabulary filtering and
single-task learning. We will explore the effectiveness of our
approach in other languages in future work.

1257



6. References
[1] A. Graves, “Sequence Transduction with Recurrent Neural Net-

works,” in Proc. ICML, 2012.

[2] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proc. ICASSP, 2013, pp.
6645–6649.

[3] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al.,
“Deep speech: Scaling up end-to-end speech recognition,” arXiv
preprint arXiv:1412.5567, 2014.

[4] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-based models for speech recognition,” in Proc.
NeurIPS, 2015, pp. 577–585.

[5] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representa-
tions,” in Proc. NeurIPS, 2020.

[6] N. Chen, S. Watanabe, J. Villalba, P. Żelasko, and N. Dehak,
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