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Abstract
Contact center conversations often consist of silent segments,
where neither the customer nor the agent is speaking. These
silences if continued beyond an acceptable level can negatively
impact contact center KPIs. Thus, understanding silences and
defining measures to handle them better via appropriate coach-
ing and alerting for agents is one of the key focus areas for
contact centers. In this paper, we demonstrate how dialogue
turns around silences could be used to understand the charac-
teristics of silences (expected vs unexpected and agent vs cus-
tomer-caused silences) via two text classification tasks. We
propose a methodology to pre-train a silence-aware language
model in contact center domain, called Silence-RoBERTa and
demonstrate its ability to better capture the conversational char-
acteristics around silences. Finally, we discuss the application
of the above methodology in real-time and post-call settings and
demonstrate its usability to reduce silences via a real-life case
study.
Index Terms: contact center, language model, BERT,
RoBERTa, silence

1. Introduction
Contact center conversations often comprise of silence when
either agents or customers engage in some off-call work, result-
ing in segments with no meaningful conversation. We call these
segments as Conversational Silences. While these silences are
inevitable in natural conversations, uninformed, frequent and
long silences often lead to negative impact on the business met-
rics in two-folds: 1) Increase in average handle time (AHT) of
calls, 2) Poor customer experience.

In order to improve the operational metrics of AHT and cus-
tomer experience, contact centers often aim to optimize silences
in calls by focusing on long and frequent silences. However, a
closer look at the conversation unveils that the scope of under-
standing silences is not only limited to duration but can poten-
tially be extended to how the agent-customer interaction went
on around the silence. Table 1 illustrates a few scenarios where
silences naturally appear in conversations, however the silences
that appear in an unexpected manner (Examples 3 and 4) or
expected silences that continue for longer duration tend to be
the reasons for poor customer experience. Thus, determining
if a silence is expected or unexpected is one of the critical as-
pects from the customer experience standpoint. We believe that
conversation around silence contains information indicative of
characteristics of the silence. Hence, understanding characteris-
tics of silences is not merely an audio problem but is also closely
connected to understanding surrounding text.

Furthermore, it is important for contact centers to be able
to define actionable strategies to deal with silences. To that ef-

fect, agents or contact centers have limited control on silences
caused by customers. Thus, being able to determine the causer
of silence would help contact centers to employ focused efforts
for designing corrective actions on silences caused by agents.

Additionally, supervisors evaluate agents on their handling
of silences and provide them feedback. However, these evalu-
ations are done weeks after the onset of call which makes the
process reactive rather than proactive. Thus, having a real-time
feedback mechanism would allow agents to immediately course
correct and ensure better adherence to protocol. Hence, we ex-
tend the definition of silence understanding to real-time setting
to provide proactive alerts to agents for using correct prompts.

Thus, we propose a framework to understand silences in
contact center conversations. The contributions of this work are
three-fold:

1. Propose an automated method for monitoring and managing
silences in contact center calls in both real-time and post-call
settings.

2. Design a framework for understanding silences via two text
classification tasks: 1) Type of silence - expected or unex-
pected, 2) Causer of silence - agent or customer.

3. Formulate a methodology for pre-training silence-aware lan-
guage model in contact center domain.

2. Problem Formulation
To understand the characteristics of silence, we formulate fol-
lowing two Spoken Language Understanding (SLU) tasks:

1. Silence-Type Classification: Given a fixed context of dia-
logue around a silent segment, we frame a binary text clas-
sification task with Expected Silence and Unexpected Silence
as the associated labels. Expected Silence denotes the cate-
gory of silences where the speaker either explicitly prompts
about upcoming silence or there is a mutual understanding
between the parties about it (Example 1 and 2 in Table 1).

2. Causer Identification: Given a fixed context around a silent
segment, we frame a binary text classification task to predict
causer of the silence - Customer or Agent. Contact centers
have limited control over silences that are caused by cus-
tomers, making them relatively less actionable. Thus, the
ability to predict the causer of silence would help contact cen-
ters identify agents who are frequently missing the protocol
and thereby design dedicated coaching sessions for them.

3. Methodology
3.1. Pre-train Silence-Aware Language Model

While speech is a primary medium of conversation in spoken
language, silences often offer contextual cues to it [1]. Typical
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Table 1: Illustrative Examples of Silence. The color codes are as follows: a) Blue - Actual silent segment in the call, b) Pink -
Prompt used to give indication about silence, c) Yellow - Instructions given by agent to customer

S.No Example Characteristic

1

Agent: do you mind if i place you on a brief hold
Customer: sure please go ahead
SILENCE <agent taking time to search for information>

Agent: thank you for holding

Type: Expected silence
Causer: Agent
Explanation: Agent explicitly informed the customer
before placing on hold

2

Agent: go to top of your screen and click on login
Customer: okay
Agent: now enter the details that you just received via
email
SILENCE <customer taking time to enter the details>

Customer: logged in

Type: Expected silence
Causer: Customer
Explanation: Agent is giving step-by-
step instructions to customer and hence there is an
implicit expectation that customer might take time to
follow them

3

Agent: thank you for calling xyz logistics
Customer: i just got a call from you all
SILENCE <abrupt silence>

Agent: ok what is your last name

Type: Unexpected silence
Causer: Agent
Explanation: Agent intentionally or unintentionally
takes time to respond

4

Agent: your email id please
Customer: abc at xyz dot com
SILENCE <agent taking time to search for information>

Customer: hello are you there

Type: Unexpected silence
Causer: Agent
Explanation: No prior indication given by agent
regarding silence

Figure 1: Pre-Training Silence-RoBERTa Model

SLU systems tend to rely only on text to learn conversational
representations. However, we hypothesise that augmenting it
with silence information provides additional context to learn
better representations. For example, presence of SILENCE be-
low helps to disambiguate if the agent is seeking additional in-
formation from the customer while looking into their account
(scenario 1) or is looking into their account to confirm the order
placement date mentioned by the customer (scenario 2).

1. Scenario 1: let me take a look at your account SILENCE just
to confirm you said you placed the order yesterday

2. Scenario 2: let me take a look at your account just to confirm
you said you placed the order yesterday

As a result of this disambiguating nature of silences, we
propose a simple yet effective approach to pre-train silence-
aware language model (Silence-RoBERTa) by including special
tokens representing silences in conversations. We describe the
pre-training process in detail below.

3.1.1. Data

To train the silence-aware language model, we use time-aligned
ASR transcripts of approximately 2.1M English dyadic conver-
sations between agents and customers. These conversations are
sampled from a proprietary dataset1 of contact center calls with
average duration of 7 minutes and spanning across multiple
lines of business like retail, e-commerce, finance, healthcare,
etc. dealing with calls from service and support verticals.

1We cannot release the datasets due to proprietary reasons.

3.1.2. Pre-Processing

Each of the transcripts are pre-processed at turn level. Indi-
vidual turns are prepended with special tokens <agent> or
<customer>, to indicate the speaker of the turn and appended
with </s> token to mark the end of the turn. Silent segments
in the transcripts are encoded based on difference in timestamps
between consecutive tokens. We create 3 bins of silences based
on duration - short (3-5 seconds), medium (5-10 seconds), long
(>10 seconds). Each of these are represented by inserting spe-
cial tokens <silence:short>, <silence:medium> and
<silence:long> respectively in the transcript. For pre-
training, random 15% tokens are replaced with [MASK] token.
Finally, an additional sequence of token type ids is created to
map individual tokens in a turn to corresponding speakers. The
encoding process has been illustrated in Figure 1.

3.1.3. Pre-Training Implementation Details

We train the silence-aware language model (Silence-RoBERTa)
using RoBERTa-base2 model architecture from Huggingface
[2]. We initialize the model with an off-the-shelf RoBERTa-
base model based on the hypothesis that a conversational lan-
guage model would be better able to generalize by leveraging
existing language model properties learned by RoBERTa-base.
The training is carried out on Masked Language Modelling task
for 5 epochs on a V100 GPU with a learning rate, batch size and
warmup steps of 5e-4, 8 and 100 respectively.

3.2. Fine-tune Task Specific Models

The fine-tuning approach for Silence-RoBERTa is as follows:

3.2.1. Data

For silence understanding tasks we sample 5.9K silent segments
that are greater than 3 seconds from contact center conversa-
tions. For each of these segments we extract L words before the
silence (left context) and R words after the silence (right con-

2https://huggingface.co/roberta-base
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Table 2: Macro F1: Silence-Type Classification Task

Approach Left Only Left + Right

Duration Based − 49.14%
SVM 70.48% 67.69%
RoBERTa-base 81.25% 80.65%
ConvRoBERTa 83.19% 82.25%
Silence-RoBERTa 85.83% 84.37%

Table 3: Macro F1: Causer Identification Task

Approach Left Only Left + Right

Duration Based − 44.50%
SVM 54.04% 62.15%
RoBERTa-base 63.26% 66.14%
ConvRoBERTa 72.85% 74.20%
Silence-RoBERTa 73.05% 76.03%

text) to create a unified window of left context, silence and right
context. A group of three annotators is asked to annotate these
windows with silence type labels - Expected or Unexpected Si-
lence and silence causer labels - Agent or Customer. We ob-
serve an inter-annotator agreement [3] of 0.76 and 0.71 for the
silence-type classification and causer identification tasks, re-
spectively. The annotated dataset is then split into train, valida-
tion and test sets of 4.1k, 0.9k and 0.9k data points respectively.

3.2.2. Fine-Tuning Implementation Details

We use the pre-trained Silence-RoBERTa model obtained in
Section 3.1.3 for task-specific fine-tuning. We choose two se-
tups for feature extraction: 1) Left Only - Where only left con-
text of silence is used, and 2) Left + Right - Where both left and
right contexts are used. The choice of these setups is motivated
from the differences between real-time and post-call settings.
Real-time system is focused towards prompting agents with an
alert for them to course correct at the onset of unexpected si-
lence. In this case, only left context is available and hence we
aim to study the performance of our system in Left Only setup.
On the other hand, post-call analysis is done after the comple-
tion of call when entire transcript is available for analysis, hence
providing the liberty to use both left and right contexts.

In both the setups, we encode contexts as per Section 3.1.2.
It is to be noted that left and right contexts might contain ad-
ditional silences apart from the one under consideration. For
Left Only setup, we obtain <s> token representation and feed it
to the classification layer. Whereas for Left + Right setup, we
obtain independent <s> token representations for left and right
contexts and concatenate them before feeding to the classifica-
tion layer. The entire network is then trained with cross-entropy
loss on a T4 GPU. We perform a hyper-parameter sweep over:
learning rate ∈ {1e−5, 5e−5, 1e−4}, batch size ∈ {32, 64},
epochs ∈ {5, 10} and weight decay ∈ {0.001, 0.01} and
choose the best setting based on Macro F1 on validation set.

4. Experiments and Results
We benchmark Silence-RoBERTa model against following
baselines for the two tasks discussed in Section 2. For extract-
ing left context, we find that L=40 empirically performs best
for Left Only setup. In Left + Right setup, we fix L=40 and
vary R from 5 to 20 tokens and find that R=15 results in best
performance for the tasks in Section 2.

Figure 2: Illustrative example of end-to-end pipeline for real-
time monitoring of conversational silence

1. Duration based: We choose this baseline since contact cen-
ters often focus on longer silences as it affects AHT and cus-
tomer experience. Also, an exploratory analysis shows that
Unexpected and Customer caused silences have lower aver-
age duration as compared to Expected and Agent caused si-
lences. Hence, we label every silence greater than K seconds
as Expected Silence caused by Agent, where K is chosen to
maximize the Macro F1 on the validation set for both tasks.

2. SVM: We train a SVM [4] model with TFIDF features to
report baseline with bag of words approach.

3. RoBERTa-base: We fine-tune RoBERTa-base model on si-
lence understanding tasks to obtain out-of-box performance.

4. ConvRoBERTa: Since our data belongs to noisy ASR tran-
scripts of conversations, we pre-train RoBERTa on in-domain
data adopting similar pre-processing methodology as in Sec-
tion 3.1.2 without encoding silence tokens. The obtained
model is then fine-tuned on the two silence tasks.

Tables 2 and 3 list the results in above setups.
Silence-Type Classification: For silence-type classifica-

tion task, we observe a higher F1 based on a bag-of-words
SVM model as compared to duration based baseline, rein-
forcing our hypothesis that surrounding dialogue turns help
in understanding conversational silences. Furthermore, fine-
tuning RoBERTa-base model results in absolute improvement
of 10-30% over duration based and SVM baselines in Left
Only and Left + Right settings. Fine-tuning ConvRoBERTa
model outperforms RoBERTa-base in both settings, signifying
the impact of in-domain pre-training. Finally, we obtain 3-
5% improvement over RoBERTa-base by fine-tuning Silence-
RoBERTa model which further emphasizes the importance of
using silence tokens in pre-training stage to capture the nuances
of human conversations in contact centers.

Causer Identification: Similar to silence-type classifi-
cation, SVM model outperforms duration based classifier on
causer identification task, further exemplifying the usefulness of
surrounding dialogue turns in understanding silences. We fine-
tune RoBERTa-base, ConvRoBERTa and Silence-RoBERTa
models on causer identification task and find a trend similar to
silence-type classification in F1 score. Specifically, fine-tuning
Silence-RoBERTa improves the F1 score by more than 9% as
compared to RoBERTa-base model.

Real-Time Implications: Categorization of silence into
expected vs unexpected depends on utterances before silence.
Hence, for silence-type classification task, one can only utilize
left context, allowing us to extend it to real-time setting. Re-
sults in Table 2 justify our hypothesis since the models in Left
Only setup consistently outperform those in Left + Right setup.
Conversely, adding right context generally improves the perfor-
mance on causer identification task. Specifically, we observe
Left + Right setup outperforms Left Only setup by an absolute
margin of 3% using Silence-RoBERTa. However, with a slight
trade-off in performance, it can be extended to provide feedback
to agents in real-time where only left context is available.
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Figure 3: Month-over-month comparison of KPIs associated with conversations silences. We observe a drop of 55.20% in % Unexpected
Silences and 44.38% in %ESVs relative to the first month.

5. Business Impact Assessment
In addition to the results in Section 4, we study the effectiveness
and business impact of the proposed framework in a real-world
contact center setup. Thus, we design a pilot study wherein we
deploy the proposed silence-type classification and causer iden-
tification models with our internal CCaaS (Contact Center as a
Service) platform. Refer to Figure 2 for schematic view of the
platform. The system detects silences longer than 3 seconds and
uses the models to infer silence-type and causer labels, which
are then used to display alerts to agents as follows:

• Scenario 1: Causer is Agent and Silence-type is Unexpected
Silence

– We display an INFORM SILENCE alert (”Inform the cus-
tomer to expect a silence”) to the agent

• Scenario 2: Causer is Agent and Silence-type is Expected
Silence

– We track the silence duration and if it exceeds a fixed
threshold (e.g 60 seconds), we display an EXTEND SI-
LENCE alert (”Inform the customer if you need more
time”) to the agent

• Scenario 3: Causer is Customer

– No action taken.

As a part of our study, we onboard a group of 10 contact
center agents who are familiar with the interface of the platform.
These agents are exposed to the above system that triggers real-
time alerts at the onset of silences. In order to accurately assess
impact of the proposed system, we ensure that agent experience
with respect to user-interface of the CCaaS platform prior to
and during the study remains identical, except for the inclusion
of real-time alerts. We randomly assign incoming calls to these
agents and monitor the following metrics on a monthly basis:

Percent Unexpected Silences: We define Percent Unex-
pected Silences as the proportion of total calls that consist of one
or more instances of Unexpected Silences. We hypothesise that
INFORM SILENCE alert provides real-time feedback to agents
to proactively inform the customer to expect a silence. The re-
sults in Figure 3 justify our hypothesis wherein we observe a
decreasing trend in the Percent Unexpected Silences, implying
that exposure to these alerts drives better adherence to protocol
by the agents while handling conversational silences.

Percent Expected Silence Violations (ESVs): We define
Percent ESVs as the proportion of Expected Silences that re-
quired triggering an EXTEND SILENCE alert. We specifically
call this as Expected Silence ”Violation” as the agent has vio-
lated an acceptable silence duration (here, 60 seconds). Figure
3 shows a decreasing trend in Percent ESVs exemplifying the ef-

fectiveness of the alert in reducing proportion of longer silences
which could potentially lead to poor customer experience.

6. Prior Work
Over the years, improving quality of service and customer satis-
faction have been key focus areas for contact centers. Roy et al.
[5] proposed real-time quality assurance system using statisti-
cal and rule-based NLP to enable agents’ supervisors to monitor
ongoing calls and take corrective actions. Ando et al. [6] pro-
posed a joint modelling of turn-level and call-level estimation of
customer satisfaction using LSTM-RNN. Additionally, Segura
et al. [7] use CNNs on raw audio signals to learn features that
help predict customer satisfaction in contact center calls.

Conversational silences are widely studied by researchers.
While silence is defined as absence of speech, [8] argue that
its presence often complements surrounding speech. In con-
tact center domain, Chowdhury et al. [1] use dialogue turns
around silence to study its functions towards information flow
in a dyadic conversation. While there is significant work on
understanding functions of silences, its impact on customer ex-
perience in contact centers space is relatively less studied.

Recent developments in language modeling using Trans-
former [9] based models like GPT [10], BERT [11], RoBERTa
[12], etc. have led to significant improvement in performances
on downstream NLP tasks. Significant efforts are being made
to pre-train models using phoneme sequences that are robust to
ASR errors and result in further improvements in downstream
tasks on ASR transcribed texts [13, 14]. Kumar et al. [15] per-
forms an investigative study by probing BERT based language
models trained on spoken transcripts to understand its ability to
learn multifarious properties in absence of speech cues.

7. Conclusion
In this paper, we put forth an effective framework for un-
derstanding conversational silences in contact centers using
surrounding dialogue turns via two text classification tasks -
Silence-Type Classification and Causer Identification. These
would not only help contact centers surface silences that lead
to poor customer experience but also help take strategic mea-
sures to coach agents. While language models generally discard
silences in conversations, our study shows that encoding them
helps in learning silence-aware representations for contact cen-
ter conversations. Fine-tuning these silence-aware models not
only leads to performance gains on our silence tasks but could
also potentially benefit other downstream tasks. Furthermore,
our methodology is applicable in understanding silences in both
real-time as well as post-call analysis that not only helps im-
prove customer experience but also boosts agent performance.
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