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Abstract
One of the most popular speech parametrizations for dysarthria
has been Mel Frequency Cepstral Coefficients (MFCCs). Al-
though the MFCCs ability to capture vocal tract characteristics
is known, the reflected dysarthria aspects are primarily undis-
closed. Thus, we investigated the relationship between key
acoustic variables in Parkinson’s disease (PD) and the MFCCs.
23 PD patients were recruited with ON and OFF conditions
of Deep Brain Stimulation of the Subthalamic Nucleus (STN-
DBS) and examined via a reading passage. The changes in
dysarthria aspects were compared to changes in a global MFCC
measure and individual MFCCs. A similarity was found in 2nd
to 3rd MFCCs changes and voice quality. Changes in 4th to 9th
MFCCs reflected articulation clarity. The global MFCC param-
eter outperformed individual MFCCs and acoustical measures
in capturing STN-DBS conditions changes. The findings may
assist in interpreting outcomes from clinical trials and improve
the monitoring of disease progression.
Index Terms: Mel Frequency Cepstral Coefficients, Parkin-
son‘s disease, speech disorder, dysarthria, acoustic analysis

1. Introduction
Speech represents the most complex quantitative marker of mo-
tor function, vastly sensitive to damage to the brain’s neural
structures [1]. Speech dysfunctions presence has been docu-
mented in a number of progressive neurological diseases, such
as Parkinson’s disease (PD) [2]. In recent years, due to techno-
logical and computational advances, there has been an increas-
ing interest in the use of speech for monitoring disease progres-
sion, symptoms severity, and a potential diagnostic aid [1, 3].
Improved ease in obtaining voice recordings using either smart-
phones [4, 5, 6], or telemonitoring homecare systems [7] offers
intriguing advances as speech evaluation is inexpensive, non-
invasive, simple to administer, and scalable to a large popula-
tion.

Analysis of the acquired speech data and potential pathol-
ogy is primarily interpreted using physiological speech patterns
describing vocal tract abilities, such as articulation, pitch vari-
ability, loudness, rhythm, and phonation [8]. However, speech
can also be parametrized by sets with low interpretability, but
high performance, such as Mel Frequency Cepstral Coefficients
(MFCCs) and their derivatives [9, 10, 11], Relative Spectral
Transform - Perceptual Linear Prediction parameters [12], and
deep neural networks embeddings [13]. The undisclosed ex-

planation poses no problem for complex frameworks such as
speech recognition but limits the use in clinically related stud-
ies and, most notably, in clinical trials [14].

Nevertheless, as one of the most popular speech
parametrizations, MFCCs remain highly relevant due to their
capacity to capture considerable information from the speech
waveform. While being a long-standing essential part of frame-
works for speech recognition [15], speaker detection [16],
speech synthesis [17], and many others, in the last decade, they
also gained interest in studies focused on speech impairments
in neurological diseases [5, 9, 10, 11, 18]. However, the com-
plete relationship between the MFCCs and particular speech
dysfunctions remains clouded. In [9], authors comment that the
coefficients detect subtle changes in the motion of the articula-
tors (tongue, lips). Nonetheless, such an assumption has never
been validated, while MFCCs can be easily influenced by other
factors such as age, gender, speaking style, or recording pro-
cedure/microphone quality [19]. Most recently, in Roche’s PD
Mobile application designed for clinical trial measures in PD
[5, 20], the speech performance of the patients was analyzed
on a sustained phonation task using only the second coefficient,
MFCC2, representing a low-to-high frequency energy ratio [8].

Although the MFCCs are emerging as one of the princi-
pal features in assessing speech impairments in neurological
diseases, their interpretability remains limited. Therefore, we
tested the sensitivity of MFCCs in a scenario covering Parkin-
sonian patients with ON and OFF conditions of Deep Brain
Stimulation of the Subthalamic Nucleus (STN-DBS). Since the
STN-DBS might substantially alter the patient’s speech abilities
[21], we expect to discover changes in MFCCs that might corre-
spond to changed acoustical patterns of hypokinetic dysarthria.

2. Methods
2.1. Participants

A total of 23 individuals with PD (four females), with a mean
age of 61.7 years (SD = 5.0, range: 53–72), who were treated
with bilateral STN-DBS in combination with dopaminergic
medication, were recruited for the study. The examination in
the PD group was held in two conditions, including STN-DBS
switched OFF (hereafter, the DBS OFF condition) and STN-
DBS switched ON (hereafter, the DBS ON condition). Detailed
clinical characteristics (clinical scores and DBS settings across
individuals with PD) and experimental procedure description
can be found in previous study [22]. As a healthy control
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(HC) group, 23 age- and sex-matched (four females) volun-
teers, a mean age of 61.5 years (SD = 5.6, range: 52–72), with
no history of neurological or communication disorders, were
recruited. All participants were native Czech speakers. The
study complied with the Helsinki Declaration and was approved
by the Ethics Committee of the General University Hospital,
Prague, Czech Republic. Each participant provided written in-
formed consent.

2.2. Speech examination

The patients were recorded after the individual therapeutical
setting and were asked to perform phonetically balanced read-
ing passage task of a standardized text of 313 words with a fa-
miliar, up-to-date vocabulary and grammatical structure. The
audio recordings were conducted in a quiet room with a low am-
bient noise level using a head-mounted condenser microphone
(Beyerdynamic Opus 55, Heilbronn, Germany) placed approx-
imately 5 cm from the subject’s mouth. Speech signals were
sampled at 48 kHz with 16-bit resolution.

2.3. MFCCs computation

After the trial testing, the following procedure was established
to calculate the first 16 MFCCs. The number 16 was set, simi-
larly to [11, 23], as a tradeoff between studies using fewer coef-
ficients, such as 12 or 13 [9, 24], and longer coefficients vectors,
such as 20 [10]. The computations were conducted in MAT-
LAB, Natick, USA.

Similarly, as in [10, 25], the audio input was first downsam-
pled to 16 kHz with lowpass pre-filtering to guard against alias-
ing. Next, a pre-emphasis filter was applied to the samples with
α = −0.95. MFCCs were computed using MATLAB Auditory
Toolbox functions. The entire signal is processed in frames us-
ing a Hamming window of a length 25ms with 5% overlap. The
frame‘s FFT magnitude is converted into Mel filterbank outputs
using 13 linearly spaced filters followed by 27 log-spaced filters
ranging from approximately 133 Hz to 6864 Hz. Next, a cosine
transform of the log10 of the output is computed. The result is a
vector of c0-c16 MFCCs standard deviations across frames. The
0th coefficient, c0, representing signal energy, is discarded.

Necessarily, a voice activity detector has to be applied, so
the coefficients are used only in the segments of speech. In
this study, dynamical thresholding of the spectral distance of
the computed coefficients is utilized to mark segments without
speech presence [26]. Coefficients in such segments are dis-
carded.

Apart from analyzing individual c1-c16, a global MFCC
measure is established, inspired by [24], as a mean of the stan-
dard deviation (std) of c1-c16. It is designed to represent the
overall dynamic movement ability of individual vocal tract el-
ements, as the individual MFCCs overlap the partitions of the
frequency domain.

2.4. Physiological acoustic markers

To link the MFCCs to key dysarthria elements of PD, five acous-
tic variables with well-known pathophysiological interpretation
were extracted from the speech waveform using the framework
developed in [8].

Speech impairments in PD can be, for the most part, char-
acterized by decreased voice quality, imprecise articulation,
monoloudness, monopitch, deficits in speech timing, and in-
appropriate pauses [27]. A decrease in voice quality can be
reflected by a lower Cepstral Peak Prominence (CPP) measure

[28]. Aspects of imprecise articulation can be represented by a
decrease in resonant frequency attenuation (RFA) measure, de-
fined as the ratio between local second formant region maxima
and local valley region minima. RFA is mainly sensitive to ar-
ticulatory decay but may also be partly influenced by abnormal
nasal resonance [8]. Monoloudness corresponds to a lower std
of the speech energy (stdPWR) and monopitch to a lower std of
estimated pitch contour (stdF0). Deficits in speech timing and
rhythm, such as slowing or accelerating tempo, are reflected by
the net speech rate (NSR) measure. Since the information about
the length and occurrence of pauses is uncapturable by MFCCs,
the measure representative for the description of pauses was
omitted.

2.5. Statistical analysis

The following two experiments were conducted to assess the
physiological nature of MFCCs.

First, the differences in the variables between DBS ON and
OFF, called ∆ON

OFF, were calculated, representing the change in
speech characteristics:

∆ON
OFFvi = vON

i − vOFF
i , (1)

where vON
i , vOFF

i are the variables (MFCCs, global MFCC
parameter, acoustical features) from DBS ON and DBS OFF
groups, respectively. Then, Spearman correlation was com-
puted between ∆ON

OFF MFCC variables and ∆ON
OFF acoustical

variables.
Subsequently, the individual variables were compared in

the three groups (HC, DBS ON, DBS OFF) using repeated mea-
sures analysis of variance (RM-ANOVA) followed by Bonfer-
roni post-hoc correction, where the HC group is age- and sex-
aligned with the DBS subjects and treated as associated mea-
surement.

3. Results
The results from the first experiment are shown in Figure 1.
Change in CPP was correlated with changes in lower MFCCs
(c2-c3), ρ > 0.48, p < 0.05. Change in RFA correlated with
c4-c9 coefficients changes, ρ > 0.45, p < 0.05. Changes in the
global MFCC parameter achieved significant correlations with
changes in CPP and RFA, ρ = 0.46, p < 0.05, partly also
reflecting changes in stdF0 and NSR, ρ = 0.41, p = 0.06, resp.
ρ = −0.40, p = 0.06.

The results from RM-ANOVA for c1-c16 and global MFCC
are shown in Figure 2. According to F (1, 22) statistics, the
global MFCC parameter achieved the highest overall signifi-
cance in between-group differences (F (1, 22) = 53.1, p <
0.001 for HC vs. DBS OFF, F (1, 22) = 19.1, p < 0.001 for
HC vs. DBS ON, F (1, 22) = 8.4, p < 0.05 for DBS ON
vs. DBS OFF). Lower coefficients (c1-c5) demonstrate signifi-
cant differences between HC and DBS ON or DBS OFF groups
(F (1, 22) > 8.0, p < 0.05). However, significant contrast be-
tween DBS ON and OFF is present in higher coefficients, c5-c8
(F (1, 22) > 5.8, p < 0.05).

Figure 3 shows boxplots for the global MFCC parame-
ter and acoustical features. Only the global MFCC parameter
achieved a significant difference between DBS ON and OFF
(F (1, 22) = 8.4, p < 0.05). RFA and stdF0 demonstrated
significant contrast between HC and both DBS ON and OFF
(F (1, 22) > 11.7, p < 0.01). NSR and stdPWR showed signif-
icant differences only between HC and DBS OFF (F (1, 22) >
6.8, p < 0.05).
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Figure 1: Spearman correlation of ∆ON
OFF, differences in variables between DBS ON and DBS OFF, for individual c1-c16 Mel Frequency

Cepstral Coefficients (MFCC) and global MFCC parameter (mean standard deviation of c1-c16) to acoustical variables. Dashed lines
represent the boundary of significant correlation with p < 0.05. Captions: CPP=Cepstral Peak Prominence, RFA=Resonant Frequency
Attenuation, stdPWR=signal energy standard deviation, stdF0=pitch contour standard deviation, NSR=Net Speech Rate.

4. Discussion
The present study explored the relationship between individ-
ual c1-c16 MFCCs and physiologically interpretable acoustic
features, including a global MFCC parameter composed of all
the coefficients. Based on changes in speech characteristics be-
tween DBS ON and DBS OFF, we could relate the alterations of
individual coefficients to specific acoustical markers. Moreover,
the global parameter as well as some individual MFCCs were
able to capture significant differences in speech production be-
tween the HC group and PD groups, and even between DBS ON
and OFF, outperforming the traditional acoustical measures.

4.1. Relationship between MFCCs and acoustical measures

Changes in lower cepstral coefficients (∆ON
OFFc2, ∆ON

OFFc3) sig-
nificantly reflect changes in CPP, representing voice quality
measure. CPP has been shown to strongly correlate with the
increase in the severity of dysphonia and breathiness in various
languages [28]. CPP integrates multiple acoustical measures re-
lated to lower speech frequencies, such as first rahmonic, pitch,
waveform deviations, and noise perturbations [28]. Since both
c2 and c3 are related to the signal energy, covering the corre-
sponding range (approximately 200 - 500 Hz), the relationship
with CPP and the ability to capture such characteristics become
apparent.

Higher MFCCs, starting from ∆ON
OFFc4 to ∆ON

OFFc9, signif-
icantly correlate with the changes in RFA measure. RFA rep-
resents the second formant to anti-formant based system [8],
i.e., special case of MFCC limited to frequency regions around
the second formant. Therefore, RFA obviously provides com-
parable results to the MFCC system, although MFCCs cover
more wide frequency range and are not dependent on the cor-
rect estimation of the position of the second formant. Both
these MFCCs and RFA metrics (at least considering the fre-
quency range between 4th to 9th cepstral coefficients) might
thus provide a measure of the dynamical ability of articulatory
movement. Such a measure might supplement the traditional
formant-based approaches reflecting the range of movement of

articulators, which particularly vary with tongue placement po-
sition.

The changes in the global MFCC parameter, designed to
represent the overall dynamic movement ability of individual
vocal tract elements, are significantly correlated to changes in
CPP and RFA as well, thus incorporating the captured speech
characteristics from corresponding individual MFCCs. The
pitch variability is mildly related and would likely significantly
contribute to observed results with increasing sample size. In-
terestingly, NSR is negatively correlated with the global mea-
sure meaning that with an increased articulation rate, the artic-
ulation ability and the quality of voice decrease; however, the
trend is not significant.

4.2. Capacity of individual MFCCs to capture within-
group differences

Individual MFCCs expressed within-group speech characteris-
tics differences with a high significance. Especially lower co-
efficients (c1-c5) achieved an excellent score in distinguishing
HC and PD cohorts (including DBS ON and OFF groups). The
results might be explained by the close connection between the
coefficients and measures of CPP and stdF0, explored in the
previous section. On the other hand, higher c5-c9 MFCCs, re-
lated to the RFA measure, outperformed the lower ones in terms
of capturing changes between DBS ON and DBS OFF. The
evidence is that distinctive and eminently recognizable speech
changes between speech in HC and PD are represented by lower
MFCCs, whereas higher (approximately c5-c9) reflect subtle
changes in articulation ability and formant structure, present be-
tween DBS ON and DBS OFF conditions. High coefficients,
c10-c16, do not appear to have a significant effect on the group
differences between PD and HC groups. However, the statis-
tics are much more powerful between DBS ON and OFF than
their comparison to HC. Sporadic significant differences be-
tween DBS ON and DBS OFF in coefficients c10, c14, and c15
might be due to correspondence with particular high formant
structures but also due to noise which is more present in higher
frequencies.
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Figure 2: Computed F (1, 22) statistics for individual c1-
c16 Mel Frequency Cepstral Coefficients (MFCC) and global
MFCC parameter (mean standard deviation of c1-c16) accord-
ing to repeated measures ANOVA. Dashed line represent bound-
ary of significant difference of p < 0.05 based on Bonferroni
post-hoc correction. Captions: ANOVA=analysis of variance,
HC=healthy controls, DBS=deep brain stimulation.

4.3. The use of the global MFCC parameter

Interestingly, the global MFCC measure demonstrated the most
significant overall within-group difference. It achieved the
highest score in separating HC and DBS OFF and a comparable
score between HC and DBS ON and DBS ON and DBS OFF
with the best-achieving coefficients. The fact that the global
parameter comprehends the properties of the individual coeffi-
cients while maintaining high robustness might prove beneficial
for its use in practice. For example, the c2 coefficient demon-
strated a significant, comparable score to the global measure
between HC and both DBS states. However, it achieved poor re-
sults distinguishing between DBS ON and DBS OFF. The same
can be analogously applied to, for example, c6.

Additionally, compared to acoustical variables used in this
study, the global MFCC demonstrates the highest overall sig-
nificance between the DBS ON and DBS OFF conditions. The
evidence might be due to the ability to reflect CPP and RFA,
and partly stdF0 and NSR, altogether with capturing additional
information about the individual vocal tract elements.

4.4. Limitations of the study

Only Czech-speaking subjects in a small cohort were part of
the study. Further investigations should include other languages
and larger sample sizes to confirm the findings. Additionally,
it has been found that microphone quality and position highly
influence amplitude-based features such as RFA [4]. Since we
showed that MFCCs work on the same principle, the sensitivity
of MFCCs to different experimental recording settings should
be recognized and considered for large-scale use [29].
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Figure 3: Statistically significant group differences for the
global Mel Frequency Cepstral Coefficients parameter (mean
standard deviation of c1-c16) and acoustical variables with with
***, **, * referring to p < 0.001, p < 0.01, and p < 0.05 ac-
cording to repeated measures analysis of variance with Bonfer-
roni post-hoc correction. Middle bars represent median, and
rectangles represent the interquartile range. Maximum and
minimum values are by error bars. Outliers are marked as
dots. Captions: DBS=deeb brain stimulation, CPP=Cepstral
Peak Prominence, RFA=Resonant Frequency Attenuation, std-
PWR=signal energy standard deviation, stdF0=pitch contour
standard deviation, NSR=Net Speech Rate.

5. Conclusions
The present study investigated the relationship between c1-c16
MFCCs and five physiologically interpretable acoustical vari-
ables of hypokinetic dysarthria. In addition, a global MFCC
parameter was established as mean std of c1-c16. A high cor-
relation was shown between changes in low c1-c3 coefficients
and changes in voice quality and signal envelope. Changes in
coefficients from approximately c4-c9 reflect subtle changes in
articulation ability and lower formants structures. The global
MFCC measure comprehended the properties of the individ-
ual coefficients while maintaining high robustness and achiev-
ing significant between-group differences, outperforming all the
single coefficients and acoustical measures. The findings may
shed light on interpreting outcomes from speech assessment for
future clinical trials.
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