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Abstract

This paper proposes a novel method to jointly generate spo-
ken and written text from input speech for expanding use cases
of speech-based applications. The spoken text generated us-
ing speech-to-spoken text systems, i.e., speech recognition sys-
tems, has disfluencies and no punctuation marks. Thus, spoken
text is often converted into written text using a spoken text-to-
written text system. However, this cascading is unsuitable for
overall optimization and computationally expensive. Although
a speech-to-written-text system that directly outputs the written
text from the speech is also developed, it cannot output the spo-
ken text. To efficiently produce both spoken and written text
from speech, our key advance is to handle a joint text of spoken
and written texts in an autoregressive model. This enables us to
correctly generate both spoken and written texts by considering
their dependencies via a single decoding process. Our experi-
ments demonstrate the effectiveness of the proposed method.
Index Terms: automatic speech recognition, spoken text-to-
written text conversion, speech-to-written text

1. Introduction

Recent improvements to the performance of automatic speech
recognition (ASR) using deep neural networks [1-3] have led
to an increase in the number of applications that utilize ASR. In
the applications, natural language processing technologies such
as summarization [4, 5], machine translation [6,7], and slot fill-
ing [8, 9] are utilized for subsequent processing. Spoken text
that ASR models generate has disfluencies such as fillers and
redundant expressions and no punctuation marks. Thus, spo-
ken text is often converted into written text which is optimal for
these natural language processing technologies. On the other
hand, disfluencies also reflect speaker interaction [10], and it is
important to analyze spoken text in applications such as interac-
tive robots. In other words, it is necessary to output both spoken
and written text. In this paper, we propose an efficient modeling
method to output both spoken and written text with a focus on
computation complexity and performance.

Conventionally, ASR results have been converted into writ-
ten text using a spoken text-to-written text conversion (ST2WT)
model [11,12]. The ST2WT model is trained on multiple tasks,
such as disfluency deletion and punctuation restoration, using
paired spoken and written text data. In the ST2WT, the perfor-
mance is degraded due to ASR errors because written text is not
directly optimized from speech features. Also, although we can
obtain spoken and written text from the ASR and ST2WT mod-
els, it requires double the number of model parameters. To out-
put written text robustly to ASR errors, a speech-to-written text
(S2WT) model that outputs written text from speech features
has been proposed [13, 14]. However, the S2WT is a model for
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outputting written text, so spoken text cannot be obtained unless
ASR is also separately performed.

To efficiently produce both the spoken and the written text
from speech features, we investigate a method to output both
texts in a single model. Our key idea is to generate written text
after spoken text via a single decoding. This approach has two
advantages. First, we can reduce the computational cost by out-
putting both the spoken and the written text with one model.
Second, written text generation performance is improved by
continuously outputting spoken and written text. We suppose
that written text can be output correctly by using information
from the spoken text as well as speech features because the
written text can be generated from the spoken text as done in
ST2WT. Therefore, we expect this approach to output both the
spoken and the written text correctly with a lightweight model.

In this paper, we propose speech-to-spoken and written text
(S2SWT), a method to generate spoken and written dual text
using a separator token [sep] (“spoken text [sep] written text”)
from speech features in an autoregressive model. To use the
common knowledge of ASR and S2WT, the S2SWT model is
trained in a two-stage manner. In the first stage, the model is
trained from ASR, S2WT, and S2SWT tasks jointly by distin-
guishing each task with special tokens in a single model. In
the second stage, the model is fine-tuned using only the S2SWT
task. In the two-stage training, the performance of ASR can be
maintained because the model can also train to generate spoken
text using a dataset without written text. Therefore, we expect
the proposed method to be able to output both the spoken and
the written text correctly via a single decoding process. To eval-
uate the proposed method, we conduct evaluation experiments
on Japanese ASR and S2WT tasks.

Our main contributions are as follows:

* We propose a speech-to-spoken and written text that outputs
spoken and written dual text from speech features in an au-
toregressive model. The S2SWT model is trained in a two-
stage manner to use paired speech and spoken or written text
for training.

* The proposed method provides efficient modeling for model
parameter size and performance because it can simultane-
ously generate spoken and written text in a single model
while considering the relationship between these texts.

* Our experiments on Japanese ASR and S2WT tasks using the
Corpus of Spontaneous Japanese (CSJ) [15] demonstrate that
the proposed method outperforms conventional methods.

2. Related work

Spoken text-to-written text conversion In the spoken-to-
written conversion task, multiple tasks, such as disfluency dele-
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Figure 1: Modeling methods to generate spoken and written text. (a) and (b) show the conventional methods, and (c) shows the proposed

method.

tion [16-18], capitalization and punctuation restoration [19—
21], inverse text normalization [22, 23], ASR spelling correc-
tion [24], and grammar correction [25], have been performed
using an individual text-to-text model. On the other hand, meth-
ods to handle these multiple tasks simultaneously have also
been proposed to improve the readability of written text [11,12].
In this paper, the written text is generated using these multiple
tasks simultaneously in the ST2WT and S2WT tasks.

Speech-to-written text Recent studies have examined ways
to output written text from speech features directly. Nozaki at
el. [13] proposed a method to perform a punctuation restoration
task. Although this method aims to improve the performance
of the punctuation restoration by using an auxiliary ASR task,
no spoken text is output. Futami at el. [14] came up with a
method that can output ASR and labels of disfluency detection
simultaneously, but the parameter size is significantly increased
because a decoder is required for each task. Also, the method is
specialized for the disfluency deletion task, making it unsuitable
for other S2ZWT tasks.

Joint model considering relationship between tasks In
speech translation (ST), there is a method that performs ASR
and ST using only speech features while considering the rela-
tionship between these tasks [26,27]. ST is a task that con-
verts the results of the ASR into translated text and is similar to
ST2WT. In this method, two decoders for ASR and ST apply
an attention mechanism for each other so that each task can be
learned and inferred while using the information of the other.
However, since this modeling requires an additional attention
layer to refer to the information of each other, the number of
parameters necessarily increases. Also, since ST and ASR are
decoded in parallel, ST cannot take advantage of all the results
of ASR, even though ST is the task that translates the results
of ASR. In the proposed method, a model learns to output spo-
ken and written text while considering the relationship between
these texts but does not change the model architecture. Also,
written text is generated using not some but all results of ASR.

3. Preliminaries

This section describes the cascading and individual models
method to generate both the spoken and the written text.
(a) and (b) in Figure 1 show the overview of these meth-
ods. In this paper, we define speech features as X
{z1,-- ,ZM}, where x,, is the m-th frame and

s Ty * e

462

M is the frame length. Also, we define spoken text as
Y {y1,-* yYn, -+ ,yn} and written text as Z
{z1,-"+ ,z1,-++,z1}, where y, and z; are the n-th and I-th
tokens, and N and L is the number of tokens in the spoken and
the written text, respectively.

3.1. Cascading

In the cascading, the ASR model output Y is used as input to
the ST2ZWT model to generate Z. The ASR model generates Y
from X, and the ST2WT model generates Z from Y as

N
P(Y|X;®.s) = H P(ynlys, - s Yn—1, X; Oasr), (1
n=1

™

P(Z|Y;Ou2w) = [[ P(zilz1, -+, 21, Y Ogizwn), (2)

=1

where @, and Og2wt are trainable model parameter sets in
the ASR and ST2WT models, respectively.

Training: The loss function for ASR or ST2WT model is de-
fined as

Low=— Y logP(Y|X;O.), 3
(X,Y)€EDas:
Letowt = — Z log P(Z|Y; Ostawt), (4

(Y,Z)€Dstawt
where D.s, is a dataset that has the paired speech features and

spoken text data, and Dsiowt is a dataset that has the paired
spoken and written text data.

Decoding: The decoding problem for spoken or written text
is defined as

Y = arg max P(Y| X, Oas), (5)
Y

Z = arg max P(Z|Y, Ogawt). (6)
z

3.2. Individual model

The individual model generates Y or Z from X using ASR or
S2WT model individually. Y is generated using the ASR model



with Eq. (1). Also, Z is generated using the S2WT model as

L
P(Z‘X, ®s2wt) = HP(ZZ|ZI, R ,Zl—17X§ 932wt)7 (7)

=1

where ®gow+ is trainable model parameter set.
Training: The loss function for the S2WT model is defined

as Z

(X,Z)€Dsawt

log P(Z|X; @sawt),  (8)

L:SQW(Z = -

where Dsawy is the paired speech features and written text data.
Also, the loss function for the ASR model is defined as Eq. (3).

Decoding: The decoding problems for spoken and written
text are defined as

Y = arg max P(Y | X, Oa.sr), )
Y

Z = arg max P(Z| X, Ogawt). (10)
z

4. Proposed method
4.1. Speech-to-spoken and written text

We propose a speech-to-spoken and written text (S2SWT) to
output spoken and written dual text from speech features in an
autoregressive model. In the proposed method, spoken text is
generated from speech features, and written text is generated
from not only speech features but also spoken text. Our idea to
generate written text from speech features and spoken text is to
generate a joint text of spoken and written text autoregressively.
The written text can be generated using the information of the
spoken text by outputting it after the spoken text in an autore-
gressive model. Thus, we expect the S2SWT model to generate
written text from speech features while considering the depen-
dency on converting spoken text into written text. (c) in Figure
1 shows the overview of the proposed method.

4.2. Modeling method

In the proposed method, to make effective use of each spoken
and written text data, we train ASR, S2WT, and S2SWT in a
single model by distinguishing each task with special tokens.
In the S2SWT task, the spoken and written dual text W =
{Y,[sep], Z} = {y1, - ,yn, [sep], 21, -+ , zL } is generated
from speech features X using a special token [dual] as

P(W|X, [dual]; Ojoint )
N+L+1
= [] Pwilwii, X, [duall; Ojoim), (11)

t=1
where Ojoint is the trainable parameter set. Also, in the ASR

and S2WT tasks, Y and Z are generated from X using special
tokens [spoken] and [written], respectively as

P(Y| X, [spoken]; Ojoint)

N
= H P(y”|y17 oty Yn—1, Xa [SpOken]; ®jOth)a (12)
n=1
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P(Z| X, [written]; Ojoint)

I
-

P(z|z1,- -, z1—1, X, [written]; Ojoint). (13)

1

Training: The S2SWT model is trained in a two-stage man-
ner. In the first stage, ASR, S2WT, and S2SWT tasks are trained
simultaneously in a single model. When a special token [spo-
ken] or [written] is set, the ASR or S2WT is trained. Also,
when a special token [dual] is set, the S2SWT is trained. The
loss function is defined as

choint = Lasr + Lsowt + LSQSWty (14)

Low=— Y log P(Y|X,[spoken]; ®joini), (15)
(X,Y)€EDasr
Loww=— Y  logP(Z|X,[written]; Ojoin),
(X,Z)EDsawt
(16)
Lowi=— Y logP(W|X,[duall; Ojeini),

(WvZ)GDSZSwt
amn
where Dsaswt 15 a dataset that has sets of speech, spoken text,
and written text. In the second stage, the joint model is fine-
tuned using the S2SWT task with Eq. (17).

Decoding: The decoding problem for S2SWT is defined as

(18)

W = arg max P(W|X, [dual]; Ojoint)-
w

5. Experiments
5.1. Datasets

We experimented with Japanese ASR and S2WT tasks using
a well-known Corpus of Spontaneous Japanse (CSJ) [15]. We
divided the CSJ into training (518 h), validation (1.9 h), and
two test (1.8 and 1.3 h) datasets. Although this dataset con-
tains paired utterance-level audio signal and spoken text (man-
ual transcription) data, it lacks written text. Thus, we use crowd-
sourcing to create written text using a part of spoken text, fol-
lowing the method in [12]. We prepared 417,406 paired the
audio signal and transcription data, of which 125,539 also had
written text. In the training data, the ASR task had 417,406, and
the ST2WT, S2WT, and S2SWT tasks had 125,539 paired data.
Also, the validation set had 1,292 paired data, and the two test
sets had 1,272 and 1,385 each. Note that the validation and test
sets contained both the spoken and the written text.

5.2. Setup

We compare the proposed method with the following baseline
models: ST2WT, cascading, individual, and interactive learn-
ing [27] models. The cascading and individual models are de-
scribed in Sec. 3. The S2WT model in the individual model
is initialized by training on ASR data and then fine-tuned on
S2WT data because the amount of data for the S2ZWT was small.
Also, the interactive learning model was originally proposed for
ASR and ST tasks to perform synchronously and interactively
in a single model. The model is initialized by training on ASR
and S2WT data and then fine-tuned on S2SWT data.

We introduced a transformer encoder-decoder model [28]
for each model. For these models, the transformer blocks were



Table 1: Example outputs of individual model and proposed method.

Spoken text Written text
Reference A FAMBEWVWS O IFHAM - +FNAE HF1 0 0RIIFM2 8F D
Individual A 5 { [0l &\ 9 oI E R NE B L 0Ol v ol 2 8 F T
Proposed AFEHE WY O TETN 4 /\E Bl1OOREWIDIIHM 2 8FTT.
Translation  uh the 100th was in showa 28 years The 100th was in showa 28 years.
Reference T h & Z nvdh — W M l2 R T Ths] & TZ] hrliheic k.
Individual ThrEBE NS —MMrIC kT [ hy] & W flRIC sk T,
Proposed T‘h"thh’% ] Al 12 Sk T [he] & [ ] HeiliMeic kT,
Translation  so the ga and wo are uh they come to both poles  The “ga” and “wo” come to both poles,

Table 2: Results of ASR and S2WT tasks. Since ST2WT is
trained from error-free spoken text, the training data is different
from other methods.

Method Params WER () BLEU (1)
ST2WT 29.4M - 0.596
Cascading  58.8M 6.2% 0.552
Individual 58.8M 6.2% 0.558
Interactive  33.6M 6.9% 0.550
Proposed 29.4M 6.0% 0.564

composed under the following conditions: the dimensions of
the output continuous representations were set to 512, the di-
mensions of the inner outputs in the position-wise feed-forward
networks were set to 1,024, and the number of heads in the
multi-head attention was set to 4. In the nonlinear transforma-
tional function, the Swish activation was used. For an encoder,
we used 80 log mel-scale filterbank coefficients as acoustic fea-
tures. The frame shift was 10 ms. The acoustic features passed
two convolution and max pooling layers with a stride of 2, so
we down-sampled them to 1/4 along with the time axis. Af-
ter these layers, we stacked 6-layer transformer encoder blocks.
For a decoder, we used 512-dimensional character embeddings
where the vocabulary size was set to 3,316. We also stacked 4-
layer transformer decoder blocks. For training, we used RAdam
optimizer [29]. We set the mini-batch size to 64 utterances and
the dropout rate in the transformer blocks to 0.1. We introduced
label smoothing where its soothing parameter was set to 0.1 and
applied SpecAugment [30]. Our SpecAugment only applied
frequency masking and time masking. For testing, we used a
beam search algorithm in which the beam size was set to 4. In
the interactive learning model, we introduce an interactive at-
tention sub-layer [27] into the transformer block in the decoder.
Also, we set A = 0.3, which is a hyper-parameter to control
how much information of the other task should be taken into
consideration [27] and k = 3 for wait-k policy [31]. As evalu-
ation metrics, we calculated the word error rate (WER) for the
ASR task and 4-gram BLEU [32] for the S2WT task.

5.3. Results

Table 1 shows examples of the output of the proposed method
and the interactive model. Table 2 lists the results of each model
along with their parameter sizes. The scores in the table were
the average of each score calculated using two test data. The
cascading and individual models have double the amount of pa-
rameters because they use two models. The interactive learning
model has more parameters than the proposed method because
it requires an additional attention layer.
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First, we focus on the results of the conventional methods.
Table 2 shows that the BLEU score of the individual model
outperformed that of cascading. This indicates that optimizing
written text directly from speech improves the performance of
generating written text. On the other hand, the performance of
the interactive learning model underperformed other methods.
We think the amount of data was insufficient to learn the rela-
tionship between the tasks in our experiments. The interactive
learning model trains the relationship between ASR and S2WT
tasks using the additional cross-attention layer. Thus, it is sup-
posed that a large set of speech, spoken text, and written text are
required to output effective representation for each other.

Next, we focus on the result of the proposed method. Table
2 shows that the proposed method outperformed conventional
methods. The improvement in the BLEU score suggests that
the proposed method can train the relationship between spoken
and written text by outputting spoken and written dual text. Ac-
tually, the individual model predicted written text based only
on speech, tokens that could have output by ASR were omit-
ted, and conversion errors (e.g., 100 was output as 10) occurred,
as shown in Table 1. On the other hand, the proposed method
can predict written text using both speech features and spoken
text, so the errors that occurred in the individual model were
improved. Thus, it is inferred that generating the spoken and
written dual text from the speech is effective for the S2WT task.
Also, the improvement in the WER score suggests that the two-
stage learning in the proposed method was effective. To use
paired speech and spoken text data, we trained ASR using the
data in the first stage. In the second stage, the spoken text was
trained from a small amount of speech, but the performance of
ASR was maintained by using the parameters in the first stage.
Therefore, we think the proposed method is an effective mod-
eling method regarding computational cost and performance to
output both the spoken and the written text.

6. Conclusion

In this paper, we proposed a speech-to-spoken and written text
(S2SWT) that generates spoken and written dual text from
speech features in an autoregressive model. The S2SWT model
can consider the relationship between spoken and written text
because the written text is generated from speech features and
spoken text by outputting written text after spoken text. Also,
we can reduce the computational cost by outputting both the
spoken and the written text with one model. Thus, the proposed
method is an effective modeling method from the viewpoint of
computation complexity and performance. Our experimental
results on ASR and S2WT tasks using the CSJ demonstrated
that the proposed method outperformed conventional methods.
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