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Abstract
This paper introduces UnDiff, a diffusion probabilistic model
capable of solving various speech inverse tasks. Being once
trained for speech waveform generation in an unconditional
manner, it can be adapted to different tasks including degra-
dation inversion, neural vocoding, and source separation. In
this paper, we, first, tackle the challenging problem of uncon-
ditional waveform generation by comparing different neural ar-
chitectures and preconditioning domains. After that, we demon-
strate how the trained unconditional diffusion could be adapted
to different tasks of speech processing by the means of recent
developments in post-training conditioning of diffusion models.
Finally, we demonstrate the performance of the proposed tech-
nique on the tasks of bandwidth extension, declipping, vocod-
ing, and speech source separation and compare it to the base-
lines.
Index Terms: speech restoration, inverse problems, diffusion
models

1. Introduction
As the field of artificial intelligence continues to evolve, gen-
erative models have emerged as a powerful tool for a variety
of tasks including speech processing. In recent years, diffu-
sion models [1, 2, 3] have gained attention due to their abil-
ity to efficiently model complex high-dimensional distributions.
Diffusion models are designed to learn the underlying data dis-
tribution’s implicit prior by matching the gradient of the log
density. This learned prior can be useful for solving inverse
problems, where the objective is to recover the input signal x
from the measurements y, which are typically linked through
some differentiable operator A, s.t. y = A(x) + n, where n
is some noise. In this paper, we introduce UnDiff, a diffusion
probabilistic model specifically designed to tackle various in-
verse tasks for speech processing including degradation inver-
sion, neural vocoding, and source separation.

The key advantage of UnDiff is its ability to be trained in an
unconditional manner for speech waveform generation and then
be adapted for the inverse problem without any additional su-
pervised training. This is in contrast to existing approaches that
utilize conditional diffusion models for waveform restoration
and generation or design specific training pipelines for specific
tasks [4, 5, 6]. Similarly to our work recent paper [7] utilizes
an unconditional diffusion model for piano music restoration
solving declipping, bandwidth extension, and inpainting prob-
lems. Unlike this work, we tackle a more challenging problem
of speech restoration and additionally consider neural vocoding
and speech source separation problems which we formulate as
inverse problems.

We explore the challenges of unconditional waveform gen-

eration and compare different neural architectures and precon-
ditioning domains. Furthermore, we demonstrate the effective-
ness of UnDiff in solving a variety of speech processing tasks
such as bandwidth extension, declipping, neural vocoding, and
speech source separation. We utilize recent developments in
diffusion guided sampling [8, 1, 9] to adapt the unconditional
diffusion for each task. Remarkably, this work proposes a
novel diffusion inverse task solver for source separation show-
ing tractability of log-likelihood for this case.

The results show that UnDiff performs comparably with
baselines, making it a promising solution for a variety of speech
processing tasks. Overall, this paper highlights the potential of
diffusion models in solving general inverse problems for speech
processing and provides a new direction for future research in
this field.

2. Background
2.1. Score-based diffusion models

Score-based diffusion models [1] are the class of neural gen-
erative models, that can be informally described as gradually
transforming analytically known and unknown (only samples
are available) data distributions pknown and pdata to each other.
More formally, one can consider a forward (1) and reverse (2)
Ito stochastic equations (VP-SDE) for the data noising process
in the following form

dx = −β(t)

2
xdt+

√
β(t)dw, (1)

dx =

(
− β(t)

2
x−β(t)∇xt log pt(xt)

)
dt+

√
β(t)dw, (2)

where t ∈ [0, T ] is the time variable, β(t) is the noise sched-
ule of the process, chosen such that if x0 ∼ pdata, then
xT ∼ pknown = N (0, I), w is Wiener process. While other
forms of stochastic differential equations exist in the literature,
throughout this paper we employ VP-SDE, which is equivalent
to DDPM [2].

Once the score function ∇xt log pt(xt) is known, it is pos-
sible to solve reverse SDE (2) numerically and thus generate
samples from pdata. It can be shown that the score function could
be approximated by a neural network sθ(xt, t) trained with de-
noising score matching objective eventually leading to L2 loss
function:

Ex∼pdata,ε∼N (0,I)

(
λ(t)

∥∥sθ(xt, t)− ε√
1− ᾱ(t)

∥∥2

2

)
, (3)

where λ(t) is some weighting function, xt =
√

ᾱ(t)x0 +√
1− ᾱ(t)ε, and ᾱ(t) is an explicit function of β(t). In prac-
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tice we optimize scaled version of score εθ(xt, t) = sθ(xt, t) ·√
1− ᾱ(t) and set λ(t) = 1. We use linear schedule for

β(t) ∈ [0.0001, 0.02] and set ᾱ(t) =
∏t

s=1(1− β(s)).

2.2. Inverse problems with diffusion models

The inverse problems address the task of retrieving object
x given its partial observation y and the degradation model
p(y|x). To utilize reverse SDE (2) for sampling from condi-
tional distribution p(x|y), one needs to know the score function
of conditional distribution ∇xt log pt(xt|y).

One way to estimate ∇xt log pt(xt|y) is to apply impu-
tation guidance (data consistency) [1, 7, 9]. The idea of this
method is to explicitly modify the score so that some parts of
a denoised estimate x̂0 = 1√

ᾱ(t)
(xt − (1 − ᾱ(t))sθ(xt, t))

are imputed with observations y. We later elaborate on how
imputation could be used for our problem.

Another way to formalize the search for x is the usage of
Bayes’ rule:

p(x|y) = p(y|x)p(x)/p(y), (4)

thus,

∇xt log pt(xt|y) = ∇xt log pt(y|xt) +∇xt log pt(xt), (5)

∇xt log pt(y|xt) is generally intractable. However, [8]
showed that one can make approximation ∇xt log p(y|xt) ≈
∇xt log p(y|x̂0), where ∇xt log p(y|x̂0) can be computed us-
ing degradation model. Given observation operator A and as-
suming Gaussian likelihood, the final approximation becomes:

∇xt log pt(y|xt) ≈ −ξ(t)∇xt∥y −A(x̂0)∥22 (6)

where ξ(t) weighting coefficient which we set to be inversely
proportional to the gradient norm similarly to [7]. Likewise [7]
we refer to this method as reconstruction guidance.

3. UnDiff
3.1. Unconditional speech generation

Unconditional speech generation is a challenging task due to
the high diversity of possible linguistic content. Prior works
on diffusion models tend to consider conditional speech gener-
ation [10, 11] or limit the scope to simple datasets with prede-
fined phrases (e.g., spoken digits) [12, 10]. Unlike these works,
we aim to train the unconditional diffusion model and do not
constrain the linguistic content of the datasets. We consider
three approaches to building unconditional diffusion models,
all approaches operate in the time domain but have different
preconditioning transformations:

1. Diffwave [10] neural network operating directly in time do-
main;

2. FFC-AE [13] neural network operating on short-time Fourier
transform spectrograms;

3. UNet [7] neural network operating on Constant-Q transform
spectrograms.

3.2. Speech inverse tasks

Bandwidth extension Frequency bandwidth extension [14,
15] (also known as audio super-resolution) can be viewed as a
realistic restoration of waveform’s high frequencies. The ob-
servation operator is a lowpass filter y = A(x) = LPF(x).

Thus, imputation guidance in this case corresponds to substi-
tuting the generated estimate of low frequencies with observed
low frequencies y at each step. More formally, this corresponds
to modifying the score function during sampling as

s̃θ(xt, t) =
1

1− ᾱ(t)
(
√

ᾱ(t)˜̂x0 − xt), (7)

where ˜̂x0 = x̂0 −LPF(x̂0)+y is imputed estimate of x0,
and x̂0 = 1√

ᾱ(t)
(xt + (1 − ᾱ(t))sθ(xt, t)) is estimate of x0

with original score function.
Declipping Similarly to [7] we consider clipping as an inverse
problem with observation function defined as A = clip(x) =
1
2
(|x+c|− |x−c|) and apply reconstruction guidance strategy.

Neural vocoding The majority of modern speech synthe-
sis systems decompose this task into two stages. In the first
stage, low-resolution intermediate representations (e.g., linguis-
tic features, mel-spectrograms) are predicted from text data
[16, 17]. In the second stage, these intermediate representations
are transformed to raw waveform [18, 19]. Neural vocoders re-
late to the techniques used in the second stage of the speech
synthesis process. The neural vocoding can be formulated as
the inverse problem with the observation operator defined as
mel-spectrogram computation A(x) = Mel(x). Since mel-
spectrogram computation is a differentiable operation we can
easily apply reconstruction guidance in this case.
Source separation The goal of single-channel speech separa-
tion is to extract individual speech signals from a mixed audio
signal, in which multiple speakers are talking simultaneously.
The potential applications of speech source separation include
teleconferencing, speech recognition, and hearing aid technol-
ogy. Let x1 and x2 be the two voice recordings. Consider
the observation model which mixes these two recordings, i.e.,
y = A(x1,x2) = x1+x2. Note that since x1 and x2 are inde-
pendent, unconditional density function on their joint distribu-
tion can be factorized as p(x1,x2) = p(x1) · p(x2). Thus, for
the unconditional score function of joint distribution, we have

∇[x1,t,x2,t] log pt(x1,t,x2,t) = [∇x1,t log pt(x1,t),0]+

[0,∇x2,t log pt(x2,t)], (8)

According to (5), to sample from joint conditional den-
sity, we need to also estimate the gradient of log-likelihood
∇[x1,t,x2,t] log pt(y|x1,t,x2,t). One can apply reconstruction
guidance (6), however, we found a more natural way to esti-
mate the log-likelihood gradient in this case. Specifically, note
that y depends only the sum of x1 and x2, it can be shown
that the same holds for x1,t and x2,t, i.e., pt(y|x1,t,x2,t) =
pt(y|x1,t + x2,t). This likelihood can be computed analyti-
cally, indeed, since x1,t =

√
ᾱ(t)x1,0 +

√
1− ᾱ(t)ε1 and

x2,t =
√

ᾱ(t)x2,0 +
√

1− ᾱ(t)ε2, where ε1, ε2 ∼ N (0, I),
we have

y = x1 + x2 =
1√
ᾱ(t)

(x1,t + x2,t)−
√

1− ᾱ(t)

ᾱ(t)
(ε1 + ε2)

(9)
Thus, pt(y|x1,t + x2,t) = N (y; 1√

ᾱ(t)
(x1,t + x2,t), 2 ·

1−ᾱ(t)
ᾱ(t)

). Therefore, we can compute the gradient of the log-
likelihood analytically

∇x1,t log pt(y|x1,t,x2,t) =

√
ᾱ(t)(y − 1√

ᾱ(t)
(x1,t + x2,t))

2(1− ᾱ(t))
,

(10)
the same relation holds for ∇x2,t log pt(y|x1,t,x2,t).
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4. Experiments and discussion
4.1. Datasets

We use two datasets for our experiments.
The first one is the publicly available VCTK dataset [20]

which includes 44200 speech recordings belonging to 110
speakers. We exclude 6 speakers from the training set and 8
recordings from the utterances corresponding to each speaker
to avoid text-level and speaker-level data leakage to the train-
ing set. For evaluation, we use 48 utterances corresponding to
6 speakers excluded from the training data.

The second dataset is the LJ-Speech dataset [21] which is
standard in the speech synthesis field. LJ-Speech is a single-
speaker dataset that consists of 13,100 audio clips with a total
length of approximately 24 hours. We use train-validation split
from [18] with sizes of 12950 train clips and 150 validation
clips. Audio samples have a sampling rate of 22.05 kHz.

4.2. Metrics

For the evaluation of samples generated by the unconditional
model, we use publicly available absolute objective speech
quality measure based on direct MOS score prediction by a
fine-tuned wav2vec2.0 [22] model (WV-MOS [23]) and uncon-
ditional Frechet DeepSpeech Distance (FDSD) introduced in
[24]. WV-MOS measures the quality of each generated sample
individually while FDSD measures the distance between distri-
butions of generated and real samples. For quality evaluation
in speech inverse tasks, we use conventional metrics extended
STOI [25], scale-invariant signal-to-noise ratio (SI-SNR) [26],
log-spectral distance (LSD) and WV-MOS. We also use 5-scale
MOS tests for subjective quality evaluation following the pro-
cedure described in [15].

4.3. Experimental details

We train all models for 230 epochs. The models are trained with
batch size 8 on audio segments of 2 seconds at the sampling
rate of 16 kHz. We use Adam optimizer with a learning rate
of 0.0002 and betas 0.9 and 0.999. For DDPM training, we
perform denoising over 200 steps during training, and condition
on β(t). All models were trained for approximately 6 days on
4 A100 GPUs.

4.4. Unconditional speech generation

We compare 3 approaches to unconditional diffusion-based
speech generation and 3 additional baseline cases. All consid-
ered approaches operate in the time domain but use different
invertible preprocessing transformations and their correspond-
ing inverse postprocessing transformations for the precondition-
ing of neural networks. To select the best architecture, we tune
hyperparameters of all models so that they have equal capac-
ities as measured by GPU memory allocated for training each
model with equal batch size (completely utilizing the capacity
of 4 A100 GPUs).

The first approach is the training of neural architecture
directly in the time domain, i.e., without any precondition-
ing transformation. After our preliminary experiments, we
found that Diffwave architecture provides the best performance
among tested time-domain architectures (we also tried UNI-
VERSE [4] and UNet [27]). We redistribute the capacity of
the original unconditional Diffwave architecture by increasing
the number of blocks from 36 to 48 and keeping the number
of channels equal to 256. Additionally, we introduce squeeze-

excitation [28] weighting on skip connections, and condition
generative model on β(t) via random Fourier features [29]. We
found that these modifications significantly improved the per-
formance compared to the original Diffwave architecture.

Another approach is based on time-frequency domain ar-
chitecture FFC-AE [13] which uses short-time Fourier trans-
form (STFT) as preconditioning. This architecture is based
on a fast Fourier convolution neural operator and operates on
complex-valued STFT spectrograms. We found FFC-AE to
provide superior quality compared to convolutional UNet-type
architectures. We use FFC-AE architecture consisting of 18
blocks with 256 channels, with conditioning done similarly to
Diffwave.

Finally, we test the approach to unconditional audio gener-
ation as proposed in [7]. In this approach, we use Constant-Q
Transform (CQT) as a preconditioning transformation and con-
volutional UNet neural architecture with dilated residual blocks
as a neural architecture as recommended by [7]. We use UNet
of depth 5 with the following channels = [64, 64, 128, 128, 256],
with downsampling by a factor of 2 at each block.

We compare the quality of 8000 unconditionally generated
samples based on WV-MOS and FDSD metrics. We also pro-
vide metrics for 4 baseline cases: ground-truth speech, gaussian
noise, samples from unconditional Diffwave with original ar-
chitecture [10], and text-to-audio AudioLDM [11] model gener-
ated with the prompt ”A person speaking English”. The results
are presented in Table 1.

Table 1: Results of unconditional speech generation (VCTK).

Model WV-MOS (↑) FDSD (↓) # Params (M)

Ground Truth 4.57 0.9 -

FFC-AE 4.06 15.3 55.3
Diffwave (ours) 3.84 7.0 32.3
CQT-UNet 2.29 12.37 27.8

AudioLDM 1.81 22.5 185.0
Diffwave (orig.) 3.12 7.0 24.0
Gaussian noise 1.27 153.5 -

Overall, all the models demonstrate the ability to generate
speech-like sounds but do not produce any semantically con-
sistent speech. This behavior is rather expected since we do not
constrain the linguistic content of the training dataset and do not
provide any language understanding guidance (unlike, e.g., Au-
dioLM [30]). However, we believe that language understand-
ing is not necessary for speech restoration since voice could be
potentially retrieved based on acoustic (syntactic) information.
We provide examples of sounds generated by our model in the
supplementary material.

We observed that the FFC-AE model provides better WV-
MOS quality, while Diffwave delivers the lowest FDSD score.
Since it is not clear what property is more important for solving
downstream inverse tasks, we conduct our subsequent experi-
ments with both Diffwave and FFC-AE models.

4.5. Inverse tasks

The experimental results for bandwidth extension, declipping,
neural vocoding, and source separation are provided in Tables
2, 3, 4, and 5 (best results are highlighted in bold). For qualita-
tive evaluation, we attach examples of Undiff outputs for each
inverse task as a part of supplementary material. All the metrics
were computed on randomly cropped 1-second segments.
Bandwidth extension In our bandwidth extension experi-
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ments, we use recordings with a sampling rate of 16 kHz as
targets and consider two frequency bandwidths for input data:
2 kHz and 4 kHz. We artificially degrade the signal to the de-
sired frequency bandwidth (2 kHz or 4 kHz) using polyphase
filtering. The results and comparison with other techniques are
outlined in Table 2.

Table 2: Results of bandwidth extension (BWE) on VCTK.

Model Supervised WV-MOS LSD MOS

Ground Truth - 4.17 0 4.09± 0.09

BWE 2kHz −→ 8kHz

HiFi++ [15] ✓ 4.05 1.09 3.93± 0.10
Voicefixer [31] ✓ 3.67 1.08 3.64± 0.10
TFiLM [32] ✓ 2.83 1.01 2.71± 0.10

UnDiff (Diffwave) × 3.48 0.96 3.59± 0.11
UnDiff (FFC-AE) × 3.59 1.13 3.50± 0.11

Input - 2.52 1.06 2.42± 0.09

BWE 4kHz −→ 8kHz

HiFi++ [15] ✓ 4.22 1.07 4.04± 0.10
Voicefixer [31] ✓ 3.95 0.98 3.92± 0.10
TFiLM [32] ✓ 3.46 0.83 3.43± 0.10

UnDiff (Diffwave) × 4.00 0.76 3.74± 0.11
UnDiff (FFC-AE) × 3.88 0.96 3.72± 0.10

Input - 3.34 0.85 3.39± 0.10

Decliping We compare our models against popular audio de-
clipping methods A-SPADE [33] and S-SPADE [34], as well
as the general speech restoration framework Voicefixer [31] on
clipped audio recordings with input SDR being equal to 3 db
(see Table 3).

Table 3: Results of declipping (input SNR = 3 db) on VCTK.

Model Supervised WV-MOS SI-SNR MOS

Ground Truth - 3.91 - 3.84± 0.11

A-SPADE [33] × 2.63 8.48 2.67± 0.11
S-SPADE [34] × 2.69 8.50 2.55± 0.11
Voicefixer [31] ✓ 2.79 -22.58 2.98± 0.12

Undiff (Diffwave) × 3.62 10.57 3.59± 0.12
Undiff (FFC-AE) × 3.01 7.35 3.06± 0.12

Input - 2.30 3.82 2.19± 0.09

Neural vocoding To demonstrate the effectiveness of the
Undiff model on neural vocoding, we train FFC-AE and Dif-
fwave models on the unconditional generation of the LJ-speech
dataset. We compare our approach with 2 supervised baselines
from the literature and the unsupervised Griffin-Lim vocoder.

Table 4: Results of neural vocoding (LJ speech dataset).

Model Supervised WV-MOS MOS

Ground Truth - 4.32 4.26± 0.07

HiFi-GAN (V1) [18] ✓ 4.36 4.23± 0.07
Diffwave [10] ✓ 4.19 4.15± 0.07
Griffin-Lim [35] × 3.30 3.46± 0.08

Undiff (Diffwave) × 3.99 3.79± 0.08
Undiff (FFC-AE) × 4.08 4.12± 0.07

Source separation To assess the Undiff’s performance on the
source separation task, we randomly mix recordings belonging

to different speakers from VCTK validation data. The record-
ings were normalized and mixed without a weighting coeffi-
cient. Though being far from real-life, such mixing makes the
source separation task to be easier for the unsupervised diffu-
sion model and allows for identifying pitfalls in unsupervised
speech source separation. While Undiff is capable to solve this
task to some extent, we found that even in such a scenario it per-
forms significantly worse than supervised baseline ConvTasNet.
One of the most characteristic artifacts that we observe is the
inability of the model to correctly identify the global context.
Although Undiff is able to correctly separate voices in local re-
gions, it mixes different voices within one sample (Figure 1).

Table 5: Results of source separation (VCTK dataset).

Model Supervised SI-SNR STOI

Mixture (input) - -0.04 0.69

Undiff (Diffwave) × 5.73 0.79
Undiff (FFC-AE) × 3.39 0.76

Conv-TasNet [36] ✓ 15.94 0.95

Figure 1: Failure case of source separation with Undiff model.

The results show that despite the Undiff was never explic-
itly trained to solve any of the considered tasks, it performs
comparably to supervised baselines for bandwidth extension,
declipping and vocoding. It also demonstrates the potential to
solve the source separation task, although there are still some
significant challenges to overcome. An interesting directions
for future work could be considering different mixing weights
and enabling models to produce globally coherent voices during
source separation. Overall, the results highlight the potential
of the unconditional diffusion models to serve as general voice
restoration tools.

5. Conclusion
In this paper, we introduced UnDiff, a diffusion probabilistic
model capable of solving various speech inverse tasks. We
demonstrated the performance of the model in bandwidth exten-
sion, declipping, neural vocoding, and source separation tasks.
The development of UnDiff provides a new tool for solving
complex inverse problems in speech restoration, highlighting
the potential of diffusion models to be a general framework for
voice restoration.
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