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Abstract
Speech foundation models, pre-trained on large amounts of un-
supervised or supervised audio data, have demonstrated an im-
pressive ability to transfer their learning to specific domains for
speech recognition. Parameter-efficient fine-tuning methods of-
fer an efficient paradigm where a small set of parameters are up-
dated to adapt the foundation model to new tasks. However, it is
unclear how the intermediate features of the foundation model
behave, and how to utilize them in a more efficient way. In this
paper, we compare the performance of three speech foundation
models for speech recognition. We re-investigate how features
from different layers behave and propose a simple and effec-
tive feature fusion method for efficient transfer learning. Ex-
perimental results demonstrate that the proposed method uses
31.7% fewer trainable encoder parameters, 13.4% less com-
putational memory cost than compared method, and does not
compromise quality on the target task.
Index Terms: Speech Recognition, Foundation Model, Trans-
fer Learning

1. Introduction
Foundation models [1], also known as large language models
(LLMs), are trained on huge amounts of text or code and can be
fine-tuned for a wide range of tasks. They have shown impres-
sive results in natural language processing tasks [2, 3, 4, 5]. In
the speech community, self-supervised pre-training of founda-
tion models on large amounts of unlabeled speech has shown
promise for improving speech recognition [6, 7]. There are
two main categories of self-supervised learning algorithms for
speech foundation models: 1) reconstruction-based methods
that predict the input feature directly, such as Auto-regressive
Predictive Coding [8] and Multi-Predictive Coding [9]; and 2)
BERT-style methods that bridge the gap between continuous
speech signal and discrete text tokens, such as Wav2vec2.0 [10],
HuBERT [11], w2v-BERT [12] and BEST-RQ [13]. After pre-
training the speech foundation model, the foundation model can
be fine-tuned on the supervised data for the downstream tasks.
For example, in the case of speech recognition, the encoder is
initialized from a pre-trained foundation model and fine-tuned
on the supervised data of the target domain. After the model
is fine-tuned, it can be used to recognize speech in the target
domain.

A large general-purpose foundation model can be adapted
to many downstream tasks, but it is challenging to adapt it to
many tasks efficiently with only a small amount of supervised
data for each task. Existing works have investigated ways to
reduce the number of trainable parameters required for fine-
tuning the foundation model. For example, BitFit [14] pro-
posed a sparse-finetuning method where only the bias terms

of the model are updated. Houlsby et al. [15] proposed to in-
sert adapter modules between the layers in a frozen pre-trained
model. Each adapter module is a small trainable feed-forward
neural network. [16, 17] further reduced the number of pa-
rameters by exploiting low-rank matrix approximation. These
parameter-efficient methods achieve decent performance on the
downstream task with a significant reduction in the trainable
parameters. However, they still require a lot of computational
resources for fine-tuning. It is because that these methods
add/update sparse parameters in the intermediate layers of the
foundation model, which requires a full backpropagation pro-
cess from the top to the bottom of the network to compute the
gradients of the trainable parameters. Besides, they use the out-
put of the highest layer in the foundation model and do not
leverage intermediate features for downstream tasks. Hierar-
chical Feature Fusion (HFF) [18] proposed a resource-efficient
transfer learning method by treating the foundation model as a
frozen feature extractor and fused features from multiple inter-
mediate layers of the foundation model using a feature projec-
tor. Motivated by the observation that the middle layers encode
high-level information while the bottom or top layers encode
low-level information, HFF projects and concatenates features
from adjacent layers hierarchically. Results in [18] showed that
after combining with Adapters [15] at all layers, the HFF can
achieve the same performance as fine-tuning the whole model
with much fewer trainable encoder parameters and much faster
training speed. However, it is redundant to use all feature layers
and a manually designed hierarchical structure does not gener-
alize to other tasks.

Pasad et al. [19] analyzed layer-wise features from a
speech representation model pre-trained using wav2vec2.0 al-
gorithm [10] and found that the middle layers encode contex-
tual and high-level information while the bottom or top few
layers encode lower-level information and local representations.
Arunkumar et al. [20] investigated how multiple self-supervised
pre-trained models can be used together in ASR. They found
that the features from different models are complementary, and
that combining them can improve the performance of ASR
tasks. Huo et al. [18] found that fusing features from multi-
ple layers of a speech foundation model can benefit the trans-
fer learning. However, fusing the redundant low-level features
from both bottom or top layers could hurt adapted model perfor-
mance and comsuming unnecessary computational resources.

In this paper, we re-investigate the efficient transfer learn-
ing of speech foundation model using feature fusion methods.
We perform speech recognition transfer learning tasks from
three foundation models with different qualities and compare
the Word Error Rate (WER) of the adapted model on the target
domain. We list our main contributions as following: Firstly,
we show that the quality of foundation models plays a more im-
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portant role for parameter-efficient methods than fine-tuning all
parameters. Secondly, we find that dropping top 4 layers of the
speech foundation model (Drop4) has no effect on the adapted
model and can reduce the computational memory cost signifi-
cantly. Thirdly, we propose a novel Global Attentional Feature
Fusion (GAFF) method which outperforms the compared meth-
ods in terms of parameter and training efficiency.

2. Methods
This study focuses on efficient transfer learning of speech foun-
dation models using feature fusion methods. We investigate
how foundation model quality affects transfer learning to down-
stream tasks using parameter-efficient methods (e.g. Adapter
and HFF), and propose a novel Global Attentional Feature Fu-
sion (GAFF) method to replace the manually designed hierar-
chical projector in HFF.

2.1. Speech Foundation Model

We follow the foundation model architecture used in [18, 21],
which is a 2-layer convolutional network followed by a 24-
layer conformer encoder [22] with hidden dimension 1024 and
contains 600M parameters in total. Each conformer layer is a
convolution-augmented transformer network, which consists of
attention, feed-forward and convolutional modules. The model
input is a vector of size 128 logMel features and SpecAug-
ment [23] is also applied to increase model robustness. In
the paper, we utilize and adapt three different foundation mod-
els: 1) pre-trained on Libri-Light data using W2v-BERT algo-
rithm [12]; 2) pre-trained on unsupervised YouTube data us-
ing Best-RQ algorithm [13]; and 3) fine-tune the pre-trained
foundation model from 2) using CTC loss [24] on supervised
YouTube data. Details of the training data are described in Sec-
tion 3.1.

2.2. Global Attentional Feature Fusion

To replace the manually designed hierarchical projection in
HFF, we propose a global attentional feature fusion method
(GAFF) to learn weight of each layer automatically as in Fig-
ure 1. After stacking features from n intermediate layers, we
get a tensor X1 ∈ RT×n×d, where T is the sequence length
and d is the model dimension. Next, we compress the global
sequence information and feature information from X1 using
the average (AVG) operator and squeeze function Fsq ,

X3 := Fsq(W,X2) = δ(X2W ) (1)

where δ is the SWISH activation function [25], W ∈ Rd×1 and
X2 = AV G(X1) ∈ R1×n×d along the sequence dimension T .
X3 ∈ R1×n×1 is then fed into the excitation function Fex to
fully capture the layer-wise dependencies:

X4 := Fex(W1,W2, X3) = σ(δ(X3W1)W2) (2)

where σ denotes the sigmoid activation, W1 ∈ Rn×n
s , and

W2 ∈ R
n
s
×n. s is the scaling factor to fuse the layer-wise

information, and we set s = 2 across our experiments. Finally,
we obtain the re-weighted tensor:

X5 := Fsc(X4, X1) = X4 ◦X1 (3)

after computing the hadamard product of X4 ∈ R1×n×1 and
X1 ∈ RT×n×d. Similar to [18], the Concat&Project module
in Figure 1 concatenates the layer-wise and feature dimensions,
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Figure 1: Global Attentional Feature Fusion.

and projects it to the model dimension d using a three-layer
feed-forward network with hidden dimension d. The GAFF is
motivated by the Squeeze-and-Excitation Networks [26], which
adaptively recalibrates the channel-wise features by explicitly
modelling the inter-channel dependencies for image classifica-
tion task. The main difference lies in how to squeeze the infor-
mation at the sequence and feature levels.

3. Experimental Setup
In the paper, we re-investigate the transfer learning capability of
the speech foundation model by adapting three foundation mod-
els to the target domain using parameter-efficient fine-tuning
methods and comparing their speech recognition performance.

3.1. Training Data

There are three different datasets used for pre-training the foun-
dation models as the source domain. Libri-Light [27] con-
tains about 60K hours of unannotated speech audio. The other
two datasets are collected from YouTube. The unsupervised
YouTube data, namely YT-U, is a multilingual YouTube dataset
segmented using voice activity detection models [28]. This
set brings a more diverse speech variations for the foundation
model than Libri-Light. The supervised YouTube data, namely
YT-T, is an English only dataset from videos that have user-
uploaded transcripts. These videos are first segmented using
a 100M-parameter RNN-T model with a bi-directional LSTM
encoder [29]. The non-speech segments identified by the YT
teacher model are removed to yield approximately 500K hours
of unlabeled audio data. The user provided transcripts, however,
are discarded and we generate pseudo-labels using the same YT
teacher model. In addition, the target domain Common Voice
data contains 1K hours of labeled English audio [30] and is used
to fine-tune the encoder and train the RNN-T decoder for the
speech recognition task.

3.2. Foundation Model And Task

We pre-train the 600M conformer encoder using three differ-
ent methods/data to obtain three foundation models. F0: Same
as the w2v-BERT XL in [12], we pre-train the encoder on
60K hours of unannotated Libri-Light data with a batch size
of 2048 using the Adam optimizer [31] for 400K steps. F1:
Following [6], we pre-train the foundation model encoder use
BEST-RQ based self-supervised training on YT-U for 800K
steps. F2: Starting from F1, we fine-tune the encoder using
CTC loss on YT-T for 70K steps. For the downstream speech
recognition task, we initialize the encoder using the pre-trained
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Table 1: Comparisons of three speech foundation models on transferring learning to Common Voice (CV) speech recognition task. ↓
denotes the smaller the better. # Trainable Encoder Params denotes the number of trainable parameters in the encoder only for the
corresponding training method on CV and the whole 124M LSTM decoder are trainable for all methods.

ID Pre-training (Loss/Data) Training Method # Trainable Computational CV Test WER
Unsup Sup On CV Encoder Params ↓ Memory Cost ↓ (%) ↓

B0 - - Train All 606 M 11409 MB 15.3
B1 w2v-BERT/Libri-Light - Fine-Tune All 606 M 11409 MB 8.2
B2 BEST-RQ/YT-U - Fine-Tune All 606 M 11409 MB 8.2
B3 BEST-RQ/YT-U CTC/YT-T Fine-Tune All 606 M 11409 MB 8.2

A1 w2v-BERT/Libri-Light - Adapter(d=256) 13.3 M 9208 MB 12.7
A2 BEST-RQ/YT-U - Adapter(d=256) 13.3 M 9208 MB 9.4
A3 BEST-RQ/YT-U CTC/YT-T Adapter(d=256) 13.3 M 9208 MB 8.9

H1 w2v-BERT/Libri-Light - HFF 12.3 M 7495 MB 59.4
H2 BEST-RQ/YT-U - HFF 12.3 M 7495 MB 11.9
H3 BEST-RQ/YT-U CTC/YT-T HFF 12.3 M 7495 MB 11.5

speech foundation model and the output of the encoder is used
as input to an RNN-T [6] along with a 6-layer LSTM decoder
and dimension 768. We also use exponential moving averag-
ing (EMA) with decay rate 0.9999 for fine-tuning. We update
the trainable encoder parameters and LSTM decoder which has
124M trainable parameters on Common Voice data for 100K
steps with batch size 256. Specifically, for Fine-Tune All or
Train All in Table 1, all encoder parameters (606M) are train-
able. For Adapter, the adapter modules inserted in the con-
former are trainable and each adapter module is a randomly
initialized 2-layer feed-forward network. The total number of
trainable trainable encoder parameters is 13.3M with bottle-
neck dimension 256. For HFF, the trainable encoder param-
eters (12.3M) are feature projectors between the encoder and
decoder. If not described explicitly, the parameter efficiency
refers to the reduction of the trainable parameters in the encoder
only. All experiments are performed on TPUs.

3.3. Evaluation

In this paper, we calculate word error rate (WER) on Common
Voice test dataset as the target domain to measure the quality
of the adapted model on the downstream speech recognition
task. Following [18], we also compare the number of trainable
encoder parameters for parameter efficiency and computational
memory cost for training efficiency.

4. Results
In this section we present our experimental study on adapting
pre-trained foundation models to the target Common Voice do-
main. The goal of this study is trying to understand the how
the quality of foundation models affects the downstream speech
recognition task and trying to improve the WER on the target
domain with fewer trainable parameters and less computational
cost in the adaptation.

4.1. Comparison of Different Foundation Models

In Table 1, we compare the qualities of different foundation
models pre-trained on different data and methods by evaluating
the WER on Common Voice test data after adaptation. We per-
form three training methods in transfer learning: Fine-Tune All
parameters and two parameter-efficient methods, Adapter [15]
and HFF [18].

Table 2: Comparison of features from different layers of two
foundaiton models, F1: BEST-RQ pre-trained on YT-U, F2:
BEST-RQ pre-trained on YT-U + CTC fine-tuned on YT-T.

Feature from Layer CV Test WER
F1 F2

3 65.2 58.8
7 30.4 29.8
11 15.2 15.1
15 14.0 12.4
19 31.9 12.5
23 92.6 12.6

By comparing B0 with B1-3 In Table 1, we can observe
that a pre-trained encoder can improve the performance of the
adapted model on the down-stream speech recognition task
when fine-tuning all parameters using the target domain data.
However, different pre-trained foundation models (B1, B2, B3)
do not show obvious difference on the WER of the adapted
model.

On the other hand, the quality of the pre-trained foun-
dation models shows significant effect on the performance of
parameter-efficient fine-tuning methods. By Comparing A1
with A2, it is easy to find out that pre-training on more diverse
unsupervised data can improve WER of the adapted model
greatly from 12.7% to 9.4%. A3 outperforms A2 by absolute
0.5% by pre-training the foundation model further on YT-T data
using CTC loss. The same conclusion can be drawn when com-
paring the results of HFF, especially H1 and H2. It is because
that HFF keeps the speech foundation model frozen and use it
directly as a feature extractor. The large quality gap between
foundation models in H1 and H2 is mainly from the diversity of
pre-trained data (Libri-Light vs. YT-U) since the performance
of w2v-BERT and BEST-RQ are very close according to the
Table 1 in [13].

4.2. Comparison of Features From Different Layers of Two
Foundation Models

Knowing that foundation model F2(BEST-RQ pre-trained on
YT-U + CTC fine-tuned on YT-T) performs better than F1(
BEST-RQ pre-trained on YT-U) in efficient transfer learning,
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Table 3: Combing Drop4, HFF and Adapter to improve parameter and training efficiency in transfer learning to Common Voice (CV)
speech recognition task. Drop4 denotes dropping top 4 conformer layers from the pre-trained speech foundation model. ↓ denotes the
smaller the better. The (x% ↓) in E2 and E3 represents the relative improvement compared to E1.

ID Training Method # Trainable Computational CV Test WER
On CV Encoder Params ↓ Memory Cost ↓ (%) ↓

B3 Fine-Tune All 606 M 11409 MB 8.2

A3 Adapter(d=256) 13.3 M 9208 MB 8.9

H3 HFF 12.3 M 7495 MB 11.5

HFF+Adapter(d=128) at 18.6 M 9178 MB 8.6
E1 all layers

E2 Drop4+HFF+Adapter(d=128) at 15.4 M (17.2% ↓) 7922 MB (13.7% ↓) 8.7
all layers

E3 Drop4+GAFF+Adapter(d=128) at 12.7 M (31.7% ↓) 7950 MB (13.4% ↓) 8.6
all layers

we evaluate and compare the performance of features of their
intermediate layers in Table 2. In the training, we update the
parameters of RNN-T decoder only and its input is from the
corresponding layer specified in the first column of Table 2.
Results show that top layers of the foundation model pre-trained
using unsupervised loss performed worse compared to the foun-
dation model pre-trained using both unsupervised loss and su-
pervised loss. For F2, even if its features from top layers do not
degrade that much as F1, they are not better than the features
from middle layers. Our observation is aligned with the results
in [19, 18].

4.3. After Pre-Training, How Many Layers to Keep for
Down-stream ASR

From the results in Table 2, we observe that features from top
few layers cannot perform better than features from middle lay-
ers. It is straightforward to ask a question, do we really need
these layers for transfer learning of down-stream tasks? In Ta-
ble 4, we would like to investigate whether it is safe to drop
top layers without degrading performance, where the founda-
tion model F2(BEST-RQ pre-trained on YT-U + CTC fine-tuned
on YT-T) is used. Results demonstrate that it is safe to drop top
4 layers without compromising the WER on the down-stream
tasks for Adapter and HFF, with reduction on training mem-
ory consumption by relative 13.7% and 13.2% respectively. It
is reasonable to state that as long as the pre-training losses are
not compatible with the down-stream task loss (BEST-RQ vs.
RNN-T or CTC vs. RNN-T), dropping top few layers would
not affect its performance in transfer learning for parameter-
efficient fine-tuning methods. This conclusion does not hold for
fine-tuning all parameters since all variables can be updated in
this case and dropping parameters would hurt performance.

4.4. Combing Drop4, HFF and Adapter for Parameter and
Training Efficiency

In this section, we try to combine Drop4(dropping top 4 layers
from the pre-trained foundation model), Adapter and HFF to-
gether to get efficiency in parameter and training at the same
time. Comparing B3, A3, and H3 in Table 3, it is easy to
see that Adapter can obtain a decent performance on target do-
main, while HFF is more training efficient. E1 which combines
Adapter and HFF as [18] performs better than either of them

Table 4: Comparing the performance of two parameter-efficient
fine-tuning methods Adapter and HFF by dropping top few con-
former layers from the pre-trained speech foundation model.
Memory denotes the computational memory cost and WER is
evaluated on the Common Voice test data.

Layers to Adapter HFF
Keep Memory WER Memory WER

0− 23 9109 8.9 7495 11.5
0− 19 7862 9.0 6503 11.5
0− 15 6623 9.4 5564 11.6

alone. By adding Drop4 to E1, E2 can achieve WER 8.7% with
17.2% fewer trainable encoder parameters and 13.7% less com-
putational memory cost than E1.

4.5. Replacing HFF with GAFF

Although a significant improvement on parameter efficiency
and training efficiency can be obtained in E2, there is a minor
regression on the WER. Besides, it is not optimal to use a man-
ually designed hierarchical structure. In this section, we replace
the balanced hierarchical structure in HFF with GAFF proposed
in Section 2.2. It is obvious in Table 3 that E3 is more parameter
efficient than E2 and achieves the same performance on the tar-
get domain. Results show that E3 takes 31.7% fewer trainable
encoder parameters and 13.4% less computation memory cost
than E1 with the same WER 8.6%.

5. Conclusion
In this paper, we re-investigate the efficient transfer learning of
speech foundation model using feature fusion methods. Exten-
sive results show that the quality of foundation models plays a
more important role for parameter-efficient methods than fine-
tuning all parameters. Besides, we also notice that dropping the
top 4 layers of the speech foundation model does not affect the
quality of adapted model. After combining with Global Atten-
tional Feature Fusion (GAFF), the new method achieves a better
parameter efficiency and training efficiency than the compared
methods.
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