
wav2vec 2.0 ASR for Cantonese-Speaking Older Adults in a Clinical Setting

Ranzo C. F. Huang, Brian Mak

Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong

{cfrhuang,mak}@cse.ust.hk

Abstract
The lack of large-scale speech corpora for Cantonese and older
adults has impeded the academia’s research of automatic speech
recognition (ASR) systems for the two. On the other hand, the
recent success of self-supervised speech representation learn-
ing has shown its competitiveness in low-resource ASR. This
work therefore studies the application of wav2vec 2.0 ASR
using monolingual and cross-lingual pre-trained models on a
developing speech corpus, CU-MARVEL, which is dedicated
to the automated screening of neurocognitive disorders (NCD)
for Cantonese-speaking older adults in Hong Kong. We de-
tail our data preparation procedures for creating a monolin-
gual wav2vec 2.0 model from scratch and further pre-training a
cross-lingual model. We report the performance of our wav2vec
2.0 ASR models on the said corpus and present a preliminary
analysis of the relationship between the ASR performance of
older adult speech and various demographic characteristics.
Index Terms: wav2vec 2.0, older adults, Cantonese, self-
supervised speech representations, ASR

1. Introduction
Transformer-based networks pre-trained by self-supervised
speech representation learning methodologies, such as wav2vec
2.0 [1], HuBERT [2], and data2vec [3], have learned to per-
form frame-level classification of pseudo-phonetic units auto-
matically derived from unlabeled audio data. With an additional
transfer learning stage coupled with some amount of labeled
data, which is commonly referred to as ‘fine-tuning’, such mod-
els may be adapted to automatic speech recognition (ASR) tasks
and achieve a performance superior to its supervised learning-
only counterpart, especially in scenarios when a limited amount
of labeled data are available [1, 2, 3]. The analysis of [4] on
English wav2vec 2.0 models suggests pre-training lets the mod-
els learn to encode acoustic and linguistic information follow-
ing an auto-encoder-like hierarchy; whereas fine-tuning with la-
bels allows the models to encode phonetic and word informa-
tion better at the highest few layers and breaks the structure’s
symmetry. The finding may suggest that while the information
learned from a larger dataset during pre-training is exploitable
by and hence favorable to low-resource ASR scenarios, the per-
formance of the downstream ASR task still benefits from an
increasing amount of (pseudo-)labeled data, as shown by, for
example, [1, 5].

A practical use case that perfectly fits into the pre-training-
fine-tuning framework is to provide automatic transcripts as an
assistance to construct a large-scale conversational-style cor-
pus, where audio recordings arrive much faster than transcrip-
tions. Manual annotating this kind of speech data is both time-
consuming and exhausting, particularly when precise and ver-

bose transcripts are required for fine-grained linguistic analyses,
e.g., Alzheimer’s disease (AD) detection where filled pauses are
utilizable features, e.g., see [6]. Self-supervised speech rep-
resentation learning-based ASR eases the problem in part by
learning from the unlabeled in-domain data in advance, and
when more labeled data become available, the learned repre-
sentations will help fine-tuning to produce better ASR results.
Nevertheless, it takes time to collect enough data for starting
off the training of self-supervised speech representations. Apart
from that, for in-domain systems, capturing linguistic informa-
tion from diverse data may be beneficial to cope with everyday
speech.

The non-necessity of precise labels for self-supervised
speech representation learning makes it easily extendable to a
cross-lingual setting, where a speech representation model is
trained with audio data in diverse languages, in the hope that the
resultant representations are generalizable across multiple lan-
guages, thereby alleviating the need of language-specific mod-
els, which are expensive to build. XLS-R [7], an extension of
XLSR [8], are a collection of cross-lingual wav2vec 2.0 mod-
els in three sizes (300M, 1B, and 2B parameters) pre-trained on
436K hours of speech data, of which the majority are in Eu-
ropean languages. Cantonese and its variant Hong Kong Can-
tonese, which this work has a particular interest in, account for
only 181 hours1 of XLS-R’s pre-training data and are therefore
under-represented. It is then questionable if XLS-R’s repre-
sentations are well transferable to the language’s ASR tasks.
Moreover, vanilla cross-lingual speech representations may suf-
fer from language interference. We therefore see cross-lingual
representations as a prototyping tool for ASR fine-tuning while
we develop monolingual pre-trained models in parallel.

In this work, we embrace both monolingual and cross-
lingual speech representations, and study the ASR perfor-
mance of the fine-tuned models stemming from (1) a Cantonese
wav2vec 2.0 model pre-trained on out-domain data, (2) XLS-R,
(3) the said Cantonese wav2vec 2.0 model further pre-trained
on in-domain data, and (4) XLS-R further pre-trained on in-do-
main data, with the aim of saving the cost of in-domain devel-
opment. The following sections will detail the data collection
and preparation procedure, as well as the experimental setup
and results, and will present our findings on the relationship be-
tween the demographic characteristics of older adults and the
ASR performance of our best model.

1This figure considers the ISO language codes of zh-HK
and yue. For their distinctions, please see the discussion on
https://github.com/common-voice/common-voice/issues/2926 .
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2. Data Preparation
2.1. CU-MARVEL

CU-MARVEL [9] is an ongoing effort that targets a thousand
Cantonese-speaking older adults (aged over 60 years) in Hong
Kong and collects their spoken responses to a battery of NCD
screening tests over time. After taking such assessments upon
a visit, they are classified either as healthy, with mild NCD, or
with major NCD.

This work considers only the data collected from the older
adult participants’ first visit, which we hereafter refer to as the
‘baseline’ data. The baseline data involves audio-recorded ses-
sions in each of which an assessor conducts a list of NCD
screening tests for an older adult participant in person in a room,
which may be a sound-proof or a non-sound-proof one. On av-
erage, such a session is more than 1.5 hours long, and a par-
ticipant speaks for around 30% of the time. It is worth noting
that the manual transcriptions are done for a subset of the as-
sessment tests only, and at the time of writing, the transcription
work is still in progress.

We use both the labeled and unlabeled training data of the
November 2022 release for system development, and evaluate
the systems’ performance on the labeled test data of the Febru-
ary 2023 release.2 The breakdown of these data is provided in
Table 1. Among the participants whom this work considers, the
majority of them are aged below 80 years, and the number of
female participants is 25% more than that of male participants.
The age distribution of these participants is given in Figure 1.

Table 1: Breakdown of the CU-MARVEL ‘baseline’ data.

Split No. of
sessions

Manually labeled hours

Assessors Participants

Partially labeled sessions
Train (Nov 2022 ver.) 124 24.3 29.3
Test (Feb 2023 ver.) 46 13.0 14.8

Unlabeled sessions
Train (Nov 2022 ver.) 288 - -

2.2. Obtaining speech segments for wav2vec pre-training

We see diarization as a necessary pre-processing step for divid-
ing unlabeled audio data into utterances, so that the pre-training
data better matches the ASR data. Below we describe our pro-
cedures for preparing the in- and out-domain pre-training data.

2.2.1. Cantonese older adult speech data

With a large number of unlabeled training sessions available,
together with the unannotated regions of the partially labeled
training sessions, we consider them a rich source of data for
wav2vec 2.0 pre-training. To obtain diarized speech segments
from the unlabeled data, we further train the pre-trained seg-
mentation pipeline3 from pyannote.audio [10, 11] with supervi-
sions derived from the labeled data annotations. The end-to-end
SincNet-LSTM-based segmentation model is further trained on
5-second chunks with speech activities from at most 2 speak-
ers. Further training the model for 10 epochs using 4 NVIDIA

2The difference between the two releases is due to the amount of
labeled data. There is no duplicate of participants in the training and
test data.

3https://huggingface.co/pyannote/segmentation

Quadro RTX8000 GPUs on a private server took an hour. We
repeated the same method on another Cantonese older adult
speech corpus, CUHK-JCCOCC-MoCA [12], to obtain slightly
more data on top of CU-MARVEL’s baseline data. After com-
bining the labeled data and the automatically segmented data
from the two corpora, we obtained 503 hours of speech seg-
ments for wav2vec 2.0 pre-training.

2.2.2. Cantonese out-domain speech data

Since there does not exist any pre-defined data in Cantonese for
self-supervised speech representation learning, we seek to cre-
ate our own set of data by obtaining audio data from the web. To
gain better control of audio quality, we pool data from a limited
number of sources, namely 59 Cantonese podcast shows and 1
YouTube channel. The sources provide mostly conversational-
based content, including casual chats, interviews, discussions,
and Skype call-ins. To the best of our knowledge, most of the
speakers are not older adults. Most podcast recordings are in
the MP3 format with a sampling rate of 44.1 kHz, and the au-
dio recordings downloaded from YouTube are in the Opus for-
mat with a sampling rate of 48 kHz. The data are resampled to
16 kHz and stored in the FLAC format.

Without a diarization training dataset that matches the
data’s domain and language, we resort to simulating conversa-
tions using all data from the zh-HK and yue language subsets
of Common Voice 11.04 excluding the data from the test speak-
ers. We simulate conversations by randomly generating turn-
hold, turn-switch, interruption, and backchannel transitions us-
ing the algorithm as described in [13]. Prior to creating simu-
lated mixtures, we train a Kaldi [14] SAT GMM-HMM system
to clean the Common Voice data and obtain word-level align-
ment information to determine the time boundaries of speech
activities. The alignment information is also used in chunk-
ing the utterances into smaller fragments which are to serve as
backchannel speech. A total of 884K mixtures which amount to
4.2K hours were created to simulate 1- to 4-speaker mixtures.
To deal with the actual conversations with a variable number
of speakers, we adopt the self-attention-based SA-EEND with
encoder-decoder-based attractors [15] and icefall’s5 implemen-

4https://commonvoice.mozilla.org/en/datasets
5https://github.com/k2-fsa/icefall
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Figure 1: Age distribution of the older adult participants of CU-
MARVEL considered in this work.
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tation of ‘Reworked’ Conformer as the backbone. The input
features are 80-dimensional log-mel filterbank coefficients with
a frame shift of 10ms and a frame length of 25ms. The encoder
consists of a 3-layer 2D-CNN sub-sampling module, which sub-
samples the input sequence by a factor of 10, 4 Conformer lay-
ers with a dimension of 384 and 6 heads, followed by 1 layer
of uni-directional LSTM accepting chronologically shuffled en-
coded features; the decoder is a 1-layer uni-directional LSTM.
The model has 20.7M parameters. Training the model for 20
epochs using 2 NVIDIA RTX A6000 GPUs on a rented server
took 1 day.

Segmentation of the raw data is done with SpeechBrain’s6

neural VAD7 front-end and the said SA-EEND model. We kept
only the segments that are at least 2 seconds and at most 40
seconds long. The segmentation procedure at the end produced
2.8K hours of speech segments for wav2vec 2.0 pre-training.

3. Experiments
3.1. wav2vec 2.0 pre-training

3.1.1. Cantonese wav2vec 2.0 pre-training

This experiment aims to produce a monolingual pre-trained
model for comparing the downstream ASR performance
yielded from monolingual and cross-lingual speech representa-
tions. We use fairseq’s [16] implementation of CNN-Conformer
for the pre-trained model. We use 12 Conformer layers, each
with a dimension of 768 and 12 attention heads. This gives rise
to 180M learnable parameters. Here, we use the data as de-
scribed in Section 2.2.2. We train the model for 320K steps, or
96 epochs, using FP16 training and the AdamW optimizer with
a weight decay of 0.01. We set the learning rate to 3e-4, and
warm up for 10% of the training steps, and follow a linear de-
cay schedule. The mask probability is set to 0.65 and the mask
length is set to 10. Pre-training using 6x NVIDIA RTX A6000
GPUs on a rented server took 8 days.

3.1.2. Cantonese wav2vec 2.0 further pre-training

This experiment performs domain adaptation on a monolingual
speech representation model. We use fairseq to further pre-train
the Cantonese wav2vec 2.0 model (Section 3.1.1) on the data
described in Section 2.2.1. We freeze the CNN layers, and train
only the Transformer model and the quantization modules for
80K steps, which amounts to 96 epochs, using FP16 training
and the AdamW optimizer with a weight decay of 0.01. We
use a learning rate of 2e-4 with no warm-up and follow a linear
decay schedule. The masking configuration is the same as in
Section 3.1.1. This took us 5 days to complete the pre-training
using 3x NVIDIA Quadro RTX 8000 GPUs on a private server.

3.1.3. XLS-R further pre-training

This experiment helps the study of the use of cross-lingual
speech representations for the fast prototyping of an in-domain
speech representation model. We use fairseq to further pre-train
the 300M XLS-R on the data as described in Section 2.2.1. The
model is a CNN-Transformer that possesses 24 Transformer
layers, each with a dimension of 1024 and 16 attention heads.
The training configuration follows Section 3.1.2. This took us
7 days to complete the pre-training using 3x NVIDIA Quadro
RTX 8000 GPUs on a private server.

6https://github.com/speechbrain/speechbrain
7https://huggingface.co/speechbrain/vad-crdnn-libriparty

3.2. wav2vec 2.0 ASR fine-tuning

Using the labeled data of CU-MARVEL, we obtain ASR mod-
els by fine-tuning (1) the Cantonese Conformer wav2vec2.0
Section 3.1.1), (2) the 300M XLS-R, (3) the further-pre-trained
Cantonese wav2vec 2.0 (Section 3.1.2), and (4) the further-pre–
trained XLS-R (Section 3.1.3) for recognition performance
comparison.

We consider building phone lexicon-based ASR systems
due to the size of the available labeled data and the large char-
acter space of Cantonese Chinese, and base our lexicon on the
pronunciation dictionary from words.hk8 and Jyutping Table9.
A problem with adopting a phone-based lexicon is that some
words come with multiple pronunciations, and we do not know
which one of them a speaker is actually referring to. Moreover,
imperfect word segmentation for the training transcripts adds
further ambiguities. Therefore, we use k2’s10 implementation
of CTC which supports graph-based supervisions that allow the
inclusion of alternative pronunciations of words for computing
the CTC loss.

We apply the following fine-tuning configuration unani-
mously to the three pre-trained models: we freeze the CNN
module and fine-tune the other parts of the model for 40K steps,
or 190 epochs, using FP16 training and the AdamW optimizer
without weight decay; the learning rate is set to 3e-5, with a tri-
stage schedule as adopted by [1], in which the first 10% of train-
ing steps are for warm-up and training the output layer only, the
next 40% are for a constant learning rate, and the remaining
steps are for linearly decaying the learning rate; we use a mask
probability of 0.75, and a layer-drop probability of 0.1. We
trained each model using 2 NVIDIA RTX Quadro RTX 8000
GPUs on a private server, and training each took half a day.

4. Results and Analysis
The output of the fine-tuned models is decoded using word n-
gram LMs with the method of whole-lattice re-scoring from
icefall. The performances of the three models are given in Ta-
ble 2, with a detailed breakdown by gender (male or female),
speaker role (assessors or participants), and recording environ-
ment (sound-proof or non-sound-proof ). Below we compare
their performance and analyze the implications.

4.1. Monolingual vs. cross-lingual representations

Comparing the performances of Model 1 (Cantonese Con-
former) and Model 2 (300M XLS-R), we observe that the
monolingual model offers some but consistent improvement
upon the cross-lingual model in all aspects. This suggests
that ASR fine-tuning benefits from a pre-trained model which
matches the language of the fine-tuning data. The improvement,
however, is limited by other factors. Environmental robustness
of the model is an issue, at least because the improvement of
recognizing assessor speech in a non-sound-proof venue is only
half of that in a sound-proof venue (a reduction of 6.06% vs.
10.95%). Another problem may be attributed to the exclusion
of older adult data during pre-training, as seen from the fact that
the assessors enjoyed a greater reduction in overall CER than
the older adult participants (a reduction of 7.92% vs. 5.30%).

8https://words.hk/faiman/analysis
9https://github.com/lshk-org/jyutping-table

10https://github.com/k2-fsa/k2
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Table 2: Character error rate (%) on the baseline test data of CU-MARVEL (Feb 2023 ver.)

Model Sound-proof venue Non-sound-proof venue Overall

Assessors Participants Assessors Participants Assessors Participants

Overall Male Female Overall Overall Male Female Overall

(1) Cantonese Conformer 4.97 17.57 14.65 15.52 7.06 26.78 17.77 22.45 6.11 18.91

(2) XLS-R (300M) 5.59 18.88 16.50 17.21 7.51 26.94 18.42 22.85 6.64 19.96

(3) (1) + further pre-train 3.98 17.11 14.33 15.17 5.33 25.30 16.32 20.99 4.72 18.01

(4) (2) + further pre-train 3.88 15.95 13.59 14.29 4.97 21.84 14.56 18.34 4.47 16.27

4.2. Effects of further pre-training

Comparing Model 1 (Cantonese Conformer) and Model 3
(Cantonese Conformer, further pre-trained on in-domain data),
as well as Model 2 (300M XLS-R) and Model 4 (300M XLS-
R, further pre-trained on in-domain data), the further pre-trained
models significantly improve upon the unadapted models, sug-
gesting the crucial importance of including in-domain data dur-
ing pre-training. The further pre-trained XLS-R outperforms
the further pre-trained monolingual model, and we hypothesize
that it is due to the larger model size of the XLS-R.

Consider the XLS-R pair, with further pre-training the as-
sessor speech shows an overall 32.61% improvement, whereas
the participants’ shows 18.50%. One reason why the accuracy
of recognizing the assessor speech greatly improves is that the
speakers are seen during training (but not the participants), and
they use consistent wordings throughout different assessment
sessions to give instructions to the participants. We also witness
a significant reduction of CER when recognizing the participant
speech in a non-sound-proof venue (19.73%), which is much
more prominent than that for a sound-proof venue (16.94%).
This suggests the simple method of further pre-training allows
the model to gain environmental robustness without the need of
sophisticated tricks. However, there still exists a large perfor-
mance gap in recognizing speech in a non-sound-proof venue
when compared to a sound-proof venue: the CER for the for-
mer environment is more than 20% higher than the latter.

5. Discussion
To understand the relationship between the ASR performance
on the participant speech and their demographics, as well as
the recording environment, we fit a linear regression model
to predict the participants’ CER obtained with our best model
(Model 4), from their gender, NCD classification, age, educa-
tion years, and the recording condition. We set a significance
level of p < 0.02. An F-test of the least-squares fit shows the
overall regression model is significant (p = 0.000). Although
age shows a weak positive correlation with CER (r = 0.366),
there is a lack of support that an increasing age gives rise to
higher CER (p = 0.543). On the other hand, while receiving
more education years shows a very weak negative correlation
(r = −0.273) with CER, education is not a significant factor to
explain CER (p = 0.028). These findings suggest other factors
are responsible for the correlations. Indeed, the F-test shows
the other factors are significant variables (p < 0.02): the partic-
ipant being a man (p = 0.000), the participant having a higher
NCD severity level (p = 0.017), and the recording environ-
ment being a non-sound-proof one (p = 0.012) show a positive
relationship with CER. These preliminary results suggest that
NCD speech is more difficult to recognize. However, due to a

small sample size, a follow-up investigation is needed to further
verify the claim. In addition, male participant speech is also
more difficult to recognize, possibly due to the imbalance of the
participants’ genders, suggesting the need of transcribing more
male participant sessions to balance the data. Finally, environ-
mental robustness is still an issue to resolve.

6. Conclusions
Specifically targeting an ASR application in a clinical set-
ting, this work presents an example of a full pipeline for self-
supervised representation learning with wav2vec 2.0, which in-
cludes diarization, (further) wav2vec 2.0 pre-training, and ASR
fine-tuning. Our findings suggest the nature of the pre-training
data is crucial to achieving a good performance in the down-
stream ASR system, and the determinants include, but not lim-
ited to language, speakers’ age group, and recording environ-
ment. In the future, we may look for more sophisticated meth-
ods to incorporate more older adult data for pre-training and
ease the problem of unbalanced demographics in the in-domain
dataset.
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