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Abstract
Voice digital assistants must keep up with trending search
queries. We rely on a speech recognition model using contex-
tual biasing with a rapidly updated set of entities, instead of
frequent model retraining, to keep up with trends. There are
several challenges with this approach: (1) the entity set must be
frequently reconstructed, (2) the entity set is of limited size due
to latency and accuracy trade-offs, and (3) finding the true entity
distribution for biasing is complicated by ASR misrecognition.
We address these challenges and define an entity set by mod-
eling customers’ true requested entity distribution from ASR
output in production using record deduplication, a technique
from the field of entity resolution. Record deduplication re-
solves or deduplicates coreferences, including misrecognitions,
of the same latent entity. Our method successfully retrieves 95%
of misrecognized entities and when used for contextual biasing
shows an estimated 5% relative word error rate reduction.
Index Terms: Automatic Speech Recognition, Entity Resolu-
tion, Record Deduplication, Contextual Biasing

1. Introduction
Voice digital assistants perform automatic speech recognition
(ASR), natural language understanding (NLU), and entity res-
olution (ER) over a variety of domains, such as smart home,
Q&A, and entertainment. ASR serves a key role as it is up-
stream to all other functions, and its performance can determine
how successfully the voice assistant meets customer needs. In
modern systems, the ASR component is an “end-to-end” model
based on architectures such as recurrent neural network trans-
ducers (RNN-T) [1] or listen-attend-spell (LAS) [2]. End-
to-end ASR models map speech directly from voice data to
graphemes without an intermediate phoneme step. As a conse-
quence, relative to component-based models, end-to-end mod-
els struggle particularly with proper nouns and rare words [3].

In this work, we focus on optimizing an end-to-end ASR
model in the entertainment domain, where customers search for
artists, songs, TV shows, and movies to play back. In entertain-
ment, proper nouns and rare words are common with requests
such as “play Metro Boomin” (a popular singer) or “search for
Bridgerton” (a popular Netflix show). Therefore, one key chal-
lenge is spoken entity recognition, where we require speech
recognition to perform at scale for these proper nouns, many of
which can be easily confused with more common words. Fur-
thermore, our model must rapidly adapt to a non-stationary dis-
tribution of requests where new hit songs, movies, and shows
come out every week and may rocket to viral popularity lev-
els with little warning. In this situation, we need to reconcile
the time, cost, and engineering challenges of frequent model re-
training and production release against the need to match the

fast shifting customer request distribution.
We address these challenges with a twofold strategy. First,

we leverage contextual biasing, where we alter the output prob-
ability of recognized entities without the latency or computa-
tional expense of full model retraining. This is accomplished by
shallow fusion, which uses on-the-fly rescoring to adjust output
probabilities during runtime inference with an externalized list
of scored entities [4]. Updating biasing in this way does not
require potentially costly model retraining and redeployment.
However, contextual biasing is not without limitations: lengthy
lists of entity names may degrade model accuracy or increase
inference latency, which is critical for a fast response to a cus-
tomer request. Consequently, biasing lists are limited to an en-
tity budget of a few thousand entities. A few thousand does not
even meet the number of new songs released every week, much
less the entirety of other entertainment media content such as
new movies, TV shows, and podcast episodes.

The second part of our strategy is to optimize the utility of
the entity budget and to best capture the non-stationary aspects
of the request distribution. We accomplish this by starting with
the observed entity distribution in the ASR output stream. The
stream is a distorted version of the actual customer request dis-
tribution because of misrecognitions. For example, Archive 81,
a TV show, can been misrecognized as “arcade eighty one”, “r.
kelly one”, or several other results depending on the speaker
conditions. We deduplicate these multiple references to the
same entity by leveraging clustering techniques developed for
record deduplication in ER research. After we correct for the
distortions and reconstruct the entity distribution, we select en-
tities and optimize weights to bias towards frequently misrec-
ognized entities.

2. Related Work
We are aware of relatively little previous work to optimize the
use of a shallow fusion entity budget. In early shallow fusion
research, a weighted FST representing a language model is de-
rived from training data or some other external reference [4, 5];
however, the assumption that the entity distribution – or entity
language model – can be derived from training data or other
external data sources does not hold for practical applications.
Thus, more recently, one group used a forecasting model to pre-
dict entity popularity and preemptively populate a biasing list
[6]. However, this approach limited itself to forecasting trends
based on exact matches of the entity name to the reference in the
user request. Thus, there is a particular risk of missing the enti-
ties most in need of contextual biasing: those for which the ASR
output frequently differs from the entity name. In our work, we
explicitly model the entity distribution, allowing us in principle
to identify the most popular entities regardless of how they are
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Figure 1: Record Deduplication Model Design. a) Blocking b)
Entity Comparison c) Clustering.

referred to in user requests.
A subsequent line of research [7] used comparison of entity

references to entities in knowledge graphs to enhance ASR per-
formance, but this differs in many respects from our approach
of co-comparison of entity references to other references, and
ultimately was not used to model the entity distribution for con-
textual biasing.

3. Model Design
Our model uses a record deduplication framework. We aim to
identify different references to video title entities, like Bridger-
ton or Archive 81, in ASR outputs. Different ASR outputs may
refer to the same entity because of ASR errors. For instance,
“arcade eighty one” is likely a reference to Archive 81 just as
“archive eighty one” is. So these request patterns are duplicates
from the perspective of the entity being requested. In ER terms,
the two request patterns are coreferent, a term we will use re-
peatedly going forward. We aim to deduplicate the total set of
references to video title entities by clustering the references to
each entity.

Formally, for a set R of unique entity references drawn from
a non-unique set of user requests U each containing one refer-
ence, we seek to create subsets of R corresponding to corefer-
ences to some latent set of entities E. If the subset of references
r1, r2, ..., rn are coreferent to entity ex∈E and pri is the prob-
ability of encountering ri in U , then pex =

∑n
i=1 pri and is the

probability of a randomly selected user request referring to the
entity ex. The set of all pe is the latent entity distribution.

3.1. Acquisition of References from the ASR Model

The record deduplication model takes as inputs the ASR outputs
from our in-house RNN-T model, which consists of an encoder
LSTM and prediction network layer with an embedding layer.
The model also has a shallow fusion-based language model that
is used to bias to global and personalized catalogs [8]. The
model was trained on over 200k hours of interactions with a
voice assistant [9]. We use this model to get the n-best ASR
recognitions from user requests or synthetic voice samples. In
practice, ASR outputs are usually further processed by an NLU
model to segment entity references and assign them to entity
classes, but for this work, we confined our attention to a single
entity class (video content titles) and to requests consisting only
of references with no surrounding text.

3.2. Record Deduplication Model

The record deduplication model transforms the ASR outputs,
i.e., the n-best transcriptions of voice requests, into clusters of
entity references, each of which is expected to contain refer-
ences to exactly one entity. Record deduplication consists of
three discrete steps: blocking, comparison, and clustering (Fig-
ure 1). Blocking places references that are likely to be corefer-
ences into a “block”, or group of potential matches. The com-

parison task, which is analogous to other comparison, match-
ing, and linking tasks in ER, consists of an all-against-all com-
parison of the set of potential coreferences in a block. The
comparison model, which produces a [0, 1]-bounded estimate
of whether two references are linked, can be either a rule-based
system or a machine learning model. Finally, clustering thresh-
olds the similarity output, producing a final decision on which
references are coreferent.

3.2.1. Blocking

We group our video title requests as a single block for input to
comparison. However, in principle and without any method-
ological changes, our model could be extended to handle user
requests for different types of content entities by repeating the
procedure with a new block for each type identified in the re-
quest set, which could be done by an NLU model that performs
entity recognition and classification.

3.2.2. Comparison Model Features

For some block B containing n references r1, r2, ..., rn, we
next perform comparison: we construct a similarity matrix S
where element sij is the similarity of ri and rj , for some
ri, rj∈B. In this work, we investigate several methods of com-
puting sij . In all cases sij is on the interval [0, 1].

All of our model configurations use ASR n-best cooccur-
rence. A list of ASR n-best candidate recognitions is auto-
matically produced as part of the output of most ASR sys-
tems. The ASR n-best cooccurrence rate is a language-agnostic
proxy for phonetic similarity. For a given ri and rj , tabu-
late cij , the mean rate of cooccurrence per occurrence, using
cij =

(
p(ri|rj) + p(rj |ri)

)
/2.

ASR n-bests have been used in a variety of contexts to im-
prove model output; in modern ASR systems, they are under-
stood to contain potentially relevant information for accurate
recognition [10, 11]. Importantly, our system looks across ag-
gregate cooccurrences and so is resilient to noise.

We also computed similarities between references from the
perspective of cooccurrence in user histories (the item-item ma-
trix in a collaborative filtering framework [12]). For any pair
of references ri, rj , their item similarity uij is defined as
uij = (Ui · Uj)/(||Ui|| · ||Uj ||), where Ui is the frequency
vector of requested references aggregated from all users who
requested content by reference ri over a predefined time length,
i.e., Ui = (n1,i, n2,i, ...) where nj,i =

∑
k v

j
k and vjk is the

number of times when the k-th user who requested ri, also re-
quested rj . Intuitively, the score is measuring the similarity
between the users who made the individual references, and the
underlying assumption is that misrecognitions come from a rel-
atively similar group of users to those with correct recognitions.

3.2.3. Comparison Model Training

Our initial proof of concept model uses ASR n-best cooccur-
rence alone to measure similarity. For more advanced mod-
els, to weigh ASR n-best cooccurrence and item similarity, we
formulated the comparison task as a binary classification prob-
lem and trained a machine learning model to provide similarity
scores on the [0, 1] continuum for candidate pairs of entity ref-
erences.

The training dataset consists of ASR and item similarities
derived from pairs of references labeled 1 if they are corefer-
ence and 0 otherwise. We mine the ground truth labels from
user interactions with our digital assistant. When a user selects
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an item from a list of displayed results after a query, we observe
whether the most-clicked item has a clickthrough rate (average
number of clicks per impression) greater than 50%. If so, we
consider the query unambiguous in the sense that it is intended
to target a specific video title (e.g., “star wars a new hope”) as
opposed to a broad search (e.g., “star wars movies”), and label
the query and entity name as a reference pair. The positive train-
ing data are made up of (1) query pairs with the same intended
video and (2) the same query as both members of the pair. The
negative training data are created by sampling from query pairs
with different intended videos. We use an equal amount of pos-
itive and negative samples for model training.

We used several classification algorithms to train the com-
parison models, including logistic regression, decision tree, and
support vector classification [13] 1. All models are trained with
an 80%/20% train-test data split. Note that the goal of the com-
parison model is to give binary decisions connecting similar
query pairs, analogous to the link prediction task [15] in net-
work theory for cluster detection on the generated graph [16].

3.2.4. Clustering Algorithm

For the proof-of-concept model using similarity from ASR n-
bests, we convert the similarity matrix S to an adjacency matrix
A with aij ∈ {0, 1} via thresholding, with the threshold empir-
ically tuned based on the training data. For the classifier models,
A is constructed directly from the classifier output labels, which
are also in {0, 1}. The sets of adjacent elements form clusters
c1, c2, ..., cm with m ≤ |R|. For some cluster ci, if rx ∈ ci and
ry ∈ ci, we conclude that rx and ry are coreferent.

3.3. Character Edit Baseline

To contrast record deduplication with a simpler approach, we
performed similarity comparison between ASR inputs and out-
puts from the public dataset using character edit distance. If
the distance between an ASR output and its respective input
was less than or equal to the next closest edit distance to other
ASR inputs, we considered these entities matched (true posi-
tive). Otherwise, we considered them mismatched and counted
both a false positive for the entity the ASR output was matched
to and a false negative for the entity it was not associated with.

3.4. Application to Shallow Fusion

Simply boosting the top k values in the set of all pe would pro-
vide an improvement over an entity distribution derived from
static training data. In practice, we use user feedback signals to
determine which references to each latent entity are likely mis-
recognitions and perform contextual biasing on the entity names
most likely to be both requested and misrecognized.

4. Data and Evaluation
We use two input datasets: a publicly reproducible one
using Amazon Polly and an in-house one derived from
anonymized/de-identified real user interactions with our digi-
tal assistant in English. The in-house data was required because
the item-item matrix will not have meaningful information if
computed from synthetic interactions. We thus use the pub-
lic dataset for an initial proof-of-concept model using only the
ASR n-best cooccurrence feature described in Section 3.2.2 and

1The models are trained using the scikit-learn package [14] and the
training parameters are kept to module defaults.

then move to the anonymized/de-identified in-house dataset for
more complicated models involving item-item cooccurrence.

Since the publicly reproducible dataset is generated from
known text, the ground truth to compute model accuracy is
readily available. For the anonymized/de-identified in-house
dataset, we rely on sets of coreferent pairs identified by user
behavior, as described in Sections 4.2 and 4.3.

4.1. Public Dataset

We generated 900 synthetic voice samples [17] using Amazon
Polly [18] on randomly selected movie titles from the Movie-
Lens 25M Dataset [19]. Before inputting the data for audio
synthesis, we preprocessed and added tokenization operations
to the movie titles to change official movie titles into spoken
forms (e.g., “Tiny Times III” to “tiny times three”) to reflect
speech patterns of voice digital assistant consumers. We used
nine different voice profiles from English (US) language vari-
ants available on Amazon Polly to generate nine samples for
each entity. For the audio synthesis, neural text-to-speech en-
gine was chosen to create high-quality audio streams. Amazon
Polly’s synthesize-speech command was used to generate the
audio and convert it to a wav file.

4.2. Recall Computation

Since we do not have ground truth for our anonymized/de-
identified in-house dataset, we instead rely on feedback ex-
tracted from user interaction sessions. To identify related ASR
output variants that should be clustered together (or dedupli-
cated) in record deduplication, we consider cases where a user
request for some reference ra to entity ex does not result in a
satisfactory response, and as a consequence, the user repeats the
request, perhaps with clearer enunciation or in a louder voice,
resulting in ASR recognition variant reference rb. If many users
repeat a given pair (ra, rb), we can conclude that the two vari-
ants are coreferent to ex. Counting the number of such pairings
recalled as edges in the record deduplication cluster output gives
us an estimate of the model’s sensitivity: these pairings are true
positives, while known edges that could have been output but
were not are false negatives.

The recall metrics do not equate to word or sentence error
rates for ASR models, since they describe the relative improve-
ment in ASR sentence error rate.

4.3. Precision Computation

We identify false positive reference pairs output by the record
deduplication model by treating reference-item/entity pairs in
Section 3.2.3 as ground truth: to calculate precision, if ra and
rb are clustered together in record deduplication outputs, but
we have ra resolved to ex with high user satisfaction and rb re-
solved to ey, y ̸= x, then (ra, rb) is counted as a false positive.
The precision is the total number of edges output minus such
false positives divided by the total number of edges output for
which both entities have ER results with positive user feedback.

Although it is possible that a reference could resolve to two
entities, this is rare in practice (< 0.1%).

5. Results and Discussion
We performed two sets of experiments: an initial proof-of-
concept using an open dataset and similarity as measured by
ASR n-best cooccurrence, and then a more extensive set of
comparisons of different possible comparison models contain-
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ing both of the ASR n-best feature and the item similarity fea-
ture described in Section 3.2.2.

5.1. Initial Proof of Concept

ASR n-best cooccurrence by itself achieved a recall of 0.997
on the synthetic dataset of ASR errors created using Amazon
Polly (Table 1), with no loss of precision. In other words, it
successfully grouped misrecognized references with correctly
recognized coreferents 99.7% of the time, without incorrectly
grouping any references to different entities. By compari-
son, simply using a nearest neighbors approach to grouping
misrecognized ASR variants with correctly recognized coref-
erences recalled only 50.0% of errors, with a significant cost
to precision. However, these results translated poorly to the
anonymized/deidentified in-house dataset based on live traffic
for our digital assistant. For this dataset, the method achieved a
recall of only 0.918, with a precision of 0.913.

The loss in performance likely arises from several factors.
First, in the more limited public dataset, we were able to use
an ASR n-best with n = 5, while the cost and latency require-
ments on the large anonymized/deidentified in-house dataset,
which was generated at runtime, required n ≤ 2.

Additional performance loss likely results from the sub-
stantially wider distribution of errors encountered in live traffic.
Live recordings may also contain misdirected traffic from the
NLU model performing the blocking.

Table 1: ASR n-Best Model Record Deduplication Results

Dataset Model Recall Precision F1

Public RNN-T only 0 1 0.000
Public Edit similarity 0.500 0.455 0.476
Public Record dedup. 0.997 1.000 0.998
Anon. Real Record dedup. 0.922 0.913 0.917

5.2. Results Including Item-Item Cooccurrence

To improve accuracy, we introduced the item-item similarity
feature. The hypothesis behind this feature is that users making
malformed or misrecognized entity references should be similar
to users requesting the same entity through a correctly recog-
nized reference. In other words, we hypothesized that distinct
groups of users will request particular entities, and that request
misrecognition is to some extent random within each group for
a particular entity.

We produced comparison scores using a linear weighting of
the two features as well as tree- and SVM-based models (Table
2). The linear and tree-based models recovered 36% and 49%
respectively of the F1 loss in moving to live data, but the SVM
only recovered 20% of performance, probably because of its
higher dependence on hyperparameter tuning.

5.3. Results on Live Data

The cluster output provides a model of entity requests; com-
bined with system logs, we can quantify the number of entity
requests in each cluster that led to the user being served the
correct entity (because the ASR output was sufficiently similar
to the canonical form that downstream ER could perform cor-
rectly). We utilize the record deduplication’s model of traffic to

Table 2: Combined n-Best/Item-Item Cooccurrence Model
Record Deduplication Results on Anonymized In-House
Dataset

Model Recall Precision F1

n-best-only 0.922 0.913 0.917
Linear 0.934 0.958 0.946
Tree 0.954 0.959 0.957
SVM 0.970 0.899 0.933

Table 3: Relative WER Results on Anonymized In-House
Dataset

Model Refs in Dataset rel. WER (%)

base full 0
base + TopK entities full 2.78
base + Record dedup. full -0.67
base modeled only 0
base + Record dedup. modeled only -13.01

perform contextual biasing on the runtime ASR model (Table
3), boosting the effective LM probability of outputting canon-
ical entities as in [8] over incorrectly resolved variants. For
evaluation, we use machine generated transcripts from record
deduplication as reference transcripts. Performing contextual
boosting on entities from record deduplication shows relative
word error rate (WER) reduction of 0.67% over randomly se-
lected, anonymized, and annotated user utterances. By com-
parison, using a selection of the top k most-mentioned entities
actually increased the error rate by 2.78%. This potentially sur-
prising finding is consistent with the increase in WER seen for
the “popular last week” heuristic in [7]. The modest size of the
record deduplication result likely arises from the high diversity
of entities in our total dataset. In a smaller selection (“mod-
eled only” in Table 3) of utterances that each contain a coref-
erence used in record deduplication, the relative improvement
was 13.01%. This figure is comparable to the WER reductions
reported in [8] using a different approach, but the data distribu-
tions are very different. Extrapolating from the 0.67% relative
WER by a factor of 1/0.1301, the entities selected for boost-
ing account for roughly 5% of the misrecognitions in our live
distribution.

6. Conclusion
Our work demonstrates that using a comparison model within
an entity deduplication framework is an effective way of build-
ing a model of entity requests. Using this entity distribution
and the information it contains about frequently misrecognized
entities, we can utilize a shallow fusion entity budget more ef-
fectively than a naive baseline.

Two promising ways to develop the record deduplication
model are (1) the use of a deep phonetic similarity model, sim-
ilar to [20] to improve performance in the comparison task and
(2) using community detection approaches like spectral cluster-
ing [21] for the clustering task.
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