
Cross-Modal Semantic Alignment before Fusion for Two-Pass End-to-End
Spoken Language Understanding

Lingyan Huang1, Tao Li1, Haodong Zhou2, Qingyang Hong1∗, Lin Li2∗

1School of Informatics, Xiamen University, China
2School of Electronic Science and Engineering, Xiamen University, China

{qyhong,lilin}@xmu.edu.cn

Abstract
The deliberation-based two-pass model that combines both se-
mantic and acoustic information can effectively improve the
performance of end-to-end (E2E) spoken language understand-
ing (SLU). However, existing two-pass models usually sim-
ply fuse speech embedding and text embedding without tak-
ing into account the inherent distinctions between these two
modalities. We propose a novel approach named Cross-modal
Semantic Alignment before Fusion (CSAF), which adopt con-
trastive loss aligning speech and text embeddings before fusing
them. We introduce a shared semantic memory transformer to
project the embeddings from two modalities into a common se-
mantic space, and a multi-modal gated network to generate the
fused embeddings. We conduct experiments on the FSC Chal-
lenge test set and SLURP dataset. The results demonstrate that
our method can significantly promote intent classification accu-
racy, achieving an absolute improvement of 3.1% over previous
works in the FSC Challenge Utterance Set.
Index Terms: spoken language understanding, deliberation
method, contrastive learning, multi-modal information fusion

1. Introduction
Spoken Language Understanding(SLU), which predicts seman-
tic information from the audio signal, is a fundamental element
of any spoken dialog system. A traditional SLU system has con-
ventionally been a cascaded architecture comprising automatic
speech recognition (ASR) and natural language understanding
(NLU). ASR transcribes speech into text while NLU takes the
transcription text as input and returns the corresponding intent.
However, the two blocks of a cascaded system are generally
built and optimized individually, posing several undesirable is-
sues. Firstly ASR transcription errors compromise the perfor-
mance of the downstream NLU systems. Secondly, the tran-
scribed text unavoidably loses the relevant acoustic information,
such as pronunciation and prosody. Due to the above restric-
tions with cascaded systems, end-to-end (E2E) SLU[1, 2, 3, 4]
has attracted considerable attention recently. However, since
parsing semantics directly from the speech is a challenging task,
it remains a struggle for E2E SLU to outperform their cascaded
counterparts.

To address this issue, a series of research on E2E SLU has
been proposed. Some approaches[5, 6, 7, 8] attempt to promote
the semantic understanding of speech representations by align-
ing them with text representations extracted from pre-trained
language models. Another solution integrates the ASR and
NLU networks with an appropriate interface to combine speech
and transcription information[9, 10, 11]. Nevertheless, these
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methods may fail to leverage transcription information that fa-
cilitates explaining the system behavior or have the potential to
be less robust to ASR errors. [12] proposed a two-pass E2E
SLU model with bi-modal input property, which can rewrite the
ASR hypothesis making it more robust to ASR errors, but they
neglected to consider that the heterogeneities across modalities
may adversely affect the modal fusion. [13] also adopted a
deliberation-based model and introduced cross-modal attention
to bridge the modality gap. However, existing methods have not
explored the utility of aligning speech and text representations
into a shared semantic space before fusing them.

In this work, we propose a novel approach named Cross-
modal Semantic Alignment before Fusion (CSAF), which
makes use of a contrastive loss to align speech embeddings and
text embeddings and utilizes a gated multi-modal network[14,
15] to automatically learn the weights of each modality for de-
termining the final fused embeddings. Our model follows the
two-pass architecture[12], which generates intent and transcrip-
tion from audio in the first pass and rewrites the first-pass results
in the second pass. It is a challenge to align speech and text em-
beddings for the two-pass model since the speech encoder used
to extract speech embeddings needs to keep frozen in the second
pass. Inspired by the recent research[16] on speech translation,
we introduce a shared semantic memory transformer with a few
shared layers to project embeddings from two modalities into a
common semantic space. We evaluate our method on the FSC
challenge test set[4, 17] and SLURP dataset[18]. Experimental
results demonstrate that our method outperforms the previous
strong baselines on accuracy.

Our major contributions can be summarized as follows:
• We propose a novel approach named CSAF, which aligns the

representations of speech and text modalities into a shared
semantic space before fusing them.

• We introduce a shared semantic memory transformer that en-
ables us to align representations of two modalities into a com-
mon semantic space requiring only a few shared layers.

• Experimental results demonstrate that our approach can im-
prove intent recognition accuracy. In particular, it is more
robust to ASR errors and has a strong generalization capabil-
ity for unseen utterances.

2. Proposed Method
2.1. Model architecture

We employ the two-pass model with a fusion module, the ar-
chitecture of which is illustrated in Figure 1. The first pass
model consists of a speech encoder and a first pass decoder. The
speech encoder takes a speech feature sequence X ∈ RU×D as
input and outputs a speech embedding denoted by S ∈ RU×D ,

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

1124 10.21437/Interspeech.2023-758



Speech Encoder

First Pass Decoder

Text Encoder

Fusion Module

Deliberation Encoder

Second Pass Decoder

Speech Feature X

Speech Embedding SText EmbeddingT

Fused Embedding H

Intent & Transcription

First Pass
Model

Second Pass
Model

Figure 1: Our proposed model architecture.

where U and D are used to represent sequence length and fea-
ture dimension, respectively. Then, this speech embedding S is
fed to the first pass decoder to generate Y 1 = (I1, y1

1 , · · · , y1
L)

of length L + 1 , which is a combination of intent I and tran-
scription text (y1, · · · , yL). We reserve the ability of the first
pass model on predicting intent so that the SLU system is still
able to produce low-latency results[12].

The second pass model takes the transcript generated by the
first pass model and the speech embedding as input and returns
more refined intent and transcription. The ASR transcript is
passed to the text encoder to obtain the text embedding T ∈
RV ×D , where V is the number of tokens in transcription and D
is the embedding dimension. The fusion module is intended to
convert speech embedding S and text embedding T into a fused
embedding H ∈ RM×D , where M is the length of the fused
embedding. Finally, the fused embedding H is encoded by a
deliberation encoder and then decoded by a second pass decoder
to produce the ultimate output result Y 2 = (I2, y2

1 , · · · , y2
L).

Note that the speech encoder updates parameters only in the first
pass and keeps frozen at the second pass to ensure that model
can generate transcripts with the same accuracy and latency.

2.2. Fusion module

We design a fusion module that consists of a shared semantic
memory transformer and a gated multi-modal network aiming
to merge the information of different modalities appropriately.
The architecture of the fusion module is shown in Figure 2.

2.2.1. Shared semantic memory transformer

Inspired by [16], we employ a shared semantic memory trans-
former to align two embeddings from different modalities into
a shared cross-modal semantic space. Specifically, we first ini-
tialize M learnable memory queries to map speech embeddings
and text embeddings in different lengths into constant length
M . The shared semantic memory transformer with a similar
structure to the transformer[19] takes memory queries as at-
tention queries, while uni-modal embeddings as attention keys
and values. This shared transformer is jointly trained on both
speech embeddings and text embeddings. In the following, we
use the example of speech embedding to describe the compu-
tational procedure for obtaining semantic memory through a n-

Transformer Encoder Shared Semantic
Memory Transformer

tanh tanh

1-

Gated Multi-modal
Network

Attention Layers

σ

Text Embedding
T S

Speech EmbeddingMemory queries
M0

Fused Embedding
H

Transformer Encoder

M0
Memory queries

Q K V Q K V

Figure 2: A detailed diagram of our fusion module.

layer shared semantic memory transformer.

Q0 = M0 ∈ RM×D (1)

Ki = Vi = S ∈ RU×D (2)

Zi = Attn(Qi,Ki, Vi) +Qi ∈ RM×D (3)

Qi+1 = OS
i = FFN(LN(Zi)) + LN(Zi) ∈ RM×D (4)

where Attn is a multi-head attention, FFN is a position-wise
feed-forward network, and LN means layer normalization. M0

denotes the memory queries, and S denotes the speech embed-
ding. OS

n ∈ RM×D is the semantic memory of speech embed-
ding. Correspondingly, we can also obtain the semantic mem-
ory of text embedding OT

n ∈ RM×D .
We apply a contrastive loss on the semantic memories of

two modalities to align them at the sequence level. Different
from the previous works[5, 6, 7], which makes pooled speech
representation align with the text [CLS] token which commonly
is the first token used for classification in pre-trained language
model BERT[20], we concatenate semantic memories across
feature dimension to acquire sequence-level representations for
preserving more information of the utterances. For the batch of
size |B|, we represent the concatenated semantic memories OS

n

and OT
n as BS ∈ R|B|×D′

and BT ∈ R|B|×D′
respectively.

The contrastive loss is computed as:

Lcon = − 1

|B|

|B|∑

i

log
ecos (B

S
i ,BT

i )/τ

∑|B|
j ̸=i e

cos (BS
i ,BT

j )/τ
(5)

where cos(·, ·) means cosine similarities, and τ is a temperature
hyperparameter.

During the training process with contrastive loss Lcon,
the speech encoder and text encoder remain frozen, and only
the shared semantic memory transformer is employed to learn
alignment.

2.2.2. Gated multi-modal network

Intuitively, the distinct information carried by speech and text
possibly has diverse influences on understanding the semantics
of an utterance. Motivated by this, we introduce a gated multi-
modal network[14, 15]to control contributions of two aligned
embeddings OS

n and OT
n . The attention layers are two fully
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connected layers following [15]. We compute attention weights
k between OT

n and OS
n as:

k = σ(Fatt([O
T
n , O

S
n ])) (6)

where σ is a sigmoid operator, and Fatt are the attention layers.
[·, ·] means concatenation operator. And then, fused embedding
H is obtained by summing the weighted representations of the
two modalities as:

H = k ⊙ tanh(OT
n ) + (1− k)⊙ tanh(OS

n) (7)

where ⊙ denotes the element-wise product.

2.3. Training process

Following previous works[12, 21] on two-pass systems, the
training process of our model can be described as two stages.
In stage one, similar to the hybrid CTC/attention model[22], we
use CTC loss and attention loss to optimize the speech encoder
and first pass decoder as:

LCTC = − log pCTC(Y |X) (8)

Latt = −
L+1∑

i

log p(yi|y1, · · · , yi−1, X) (9)

L1−pass = LSLU = αLCTC + (1− α)Latt (10)

where α is a hyperparameter. In stage two, we train the fusion
module, deliberation encoder, and second pass decoder with the
SLU task and alignment task as shown below:

L2−pass = λLSLU + (1− λ)Lcon (11)

where λ is a hyperparameter.

3. Experimental Setups
3.1. Datasets

Our experiments are performed on two publicly available
datasets: FSC[4] and SLURP[18]. FSC is a popular benchmark
dataset for SLU evaluation, which consists of 30,043 spoken
commands for a smart home or virtual assistant. There are a to-
tal of 31 distinct intents. Since the first pass model with speech
encoder and decoder can achieve 99.7% intent classification ac-
curacy on the original test split[23], we experiment with the
Challenge[17] test split containing Challenge Speaker Set with
unseen speakers and Challenge Utterance Set with unseen utter-
ances. SLURP is a recently challenging dataset that has higher
complexity in its lexical richness, syntactic structure, and se-
mantic content. It contains 72,277 utterances and 18 unique
scenarios with 46 defined intents. For the SLURP dataset, we
additionally use the extra SLURP-Synth with 69,253 synthe-
sized speech.

3.2. Model training and hyperparameters

Our models are built on top of the Espnet-SLU toolkit[23]. Ex-
cluding the fusion module, all configuration of our model is
similar to the previous two-pass E2E SLU system[12]. The
model details and hyperparameters are different between the
two datasets. For the FSC dataset, we use HuBERT[24] that
pre-trained through self-supervision as a feature extractor to im-
prove the acoustic modeling. We apply 12 transformer encoder
blocks and 6 transformer decoder blocks with 256-dimensional
hidden sizes and 4 attention heads for two encoder-decoder

Table 1: Performance comparison in intent classification accu-
racy (%) of our proposed two-pass model with CSAF and other
baselines.

Model FSC Challenge SLURP

Utt Spk

Only audio

Espnet-SLU[23] 78.5 97.5 86.3

Audio and Transcripts

Two-pass[12] 82.3 98.1 86.6
Two-pass w/ CA 79.9 97.4 87.1

Two-pass w/ CSAF(Ours) 85.4 97.8 87.2

structures of our model. BERT[20] is used as the text encoder.
The shared semantic memory transformer closely resembled a
3-layer transformer with 256-dimensional hidden sizes and 4
attention heads, and the number of its memory queries is set to
64. The attention layers have 32 and 512 units respectively, and
a fully connected layer converts the representation dimension-
ality from 256 to 512 before fusing. The hyperparameters α, λ
and τ are set to 0.5, 0.5 and 1. For the SLURP dataset, there are
some different model setups. Firstly, we apply FBank features
as speech features. Secondly, the speech/deliberation encoder
consists of 6-layer conformer[25] with 512-dimensional hidden
sizes and 8 attention heads. Lastly, the hyperparameters α, λ
and τ are 0.3, 0.1 and 0.1, respectively.

ASR transcripts of the FSC dataset are generated by a pre-
trained ASR model trained on Gigaspeech[26] dataset, that ef-
fectively improves semantic understanding results of the sec-
ond stage[12]. The entire model is trained with an Adam[27]
optimizer with learning rate of 2e-4 and 25k warm-up up-
dates. In addition, we utilize the SpecAugment[28] and label
smoothing[29] techniques during training.

4. Results and Analysis
4.1. Main results

The results of our experiments on the FSC Challenge dataset
and SLURP dataset are reported in Table 1. For evaluation, we
employ intent classification accuracy as metric. It is observed
that our model achieves remarkable improvements on three
datasets compared with an only acoustic-based strong baseline
Espnet-SLU[23] which is the same as the first-pass of the pro-
posed system. To further demonstrate the advantages of the pro-
posed CSAF method, we implement the two-pass model[12],
which concatenates speech embedding and text embedding in
the time dimension and feeds the concatenated embedding to
deliberation encoder. Our method outperforms the two-pass
model on FSC Challenge Utterance Set and SLURP dataset,
obtaining an absolute improvement of 3.1% and 0.6%. On
FSC Challenge Speaker Set, the proposed method also achieves
competitive performance. We observe that our approach
greatly reduces misidentification of the sentence “open lan-
guage settings” with the intent ‘change language none none’
as ‘change language chinese none’, which is a common error
in the two-pass model because “settings” is an unseen word.
To measure the performance of our CSAF method against an-
other fusion method adopted by [13], we construct a two-pass
model with cross-modal attention (CA) fusion method and dis-
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Table 2: Ablation study for the CSAF method. Different variants
of the CSAF method are evaluated, including removing con-
trastive loss or gated network and replacing contrastive loss.

Model FSC Challenge SLURP

Utt Spk

CSAF 85.4 97.8 87.2
w/o Gate 80.9 98.0 86.7
w/o Lcon 83.6 98.1 86.4

w/ Lcon-Token 82.9 98.0 86.8
w/ Lcon-Mem 80.5 97.8 86.7

cover that this fusion mechanism only works on the SLURP
dataset. With the observation that the ASR model trained on the
Gigaspeech dataset gets 29.8 and 35.4 word error rate (WER)
on FSC Challenge Utterance and Speaker Set, we argue that
the degradation of accuracy on the FSC Challenge dataset is at-
tributable to the high WER of ASR transcripts. It also proves
that our proposed CSAF method is more robust against ASR
errors.

4.2. Ablation study

We conduct an ablation study to analyze each component, as
shown in Table 2. We notice that any of our variations only
leads to fewer fluctuations in the FSC Speaker Set, probably
since the performance on this set is already near 100% making
it difficult to increase further. We validate the effectiveness of
the multi-modal gated network (Gate) and contrastive loss by
removing them. Here we can see an accuracy decrease on FSC
Utterance Set and SLURP dataset, proving that the gated net-
work and contrastive loss are both beneficial to improve the per-
formance. We also experiment with two alternative contrastive
losses Lcon-Token and Lcon-Mem. The former means the con-
trastive loss computed like [8], which aims to align speech em-
beddings with text embeddings on a token-by-token basis. The
latter is adopted by [16], which maximizes the similarity be-
tween the same semantic memory element. The results indicate
that these two contrastive losses did not achieve the anticipated
effect on the FSC Utterance Set, which further demonstrates the
effectiveness of our sequence-level contrastive loss.

4.3. Visualization analysis

This work aims to validate that fusing align representations of
different modalities contributes to promoting the performance
of SLU. To verify that speech and text embeddings are well-
aligned into a shared semantic space by a 3-layer shared seman-
tic memory transformer, we visualize the feature distribution of
two modalities. We apply principal component analysis (PCA)
to reduce the dimension of feature to 2D. The unaligned repre-
sentations extracted by the uni-modal encoder and the aligned
representations are the output embeddings of the shared seman-
tic memory transformer. As shown in Figure 3, after the shared
semantic memory transformer, the speech representations and
text representations are mapped to the same distribution, which
demonstrates that they are well-aligned into the common space.
To better investigate whether aligned speech and text represen-
tations have the same semantics, we randomly chose several
representations with different intents for visualization. Figure 4
illustrates that speech and text representations with the same in-
tent are clustered together.

Unaligned representations Aligned representations

(a) FSC Utterance Set

Unaligned representations Aligned representations

(b) SLURP

Figure 3: A visualization of speech representations (red) and
text representations (blue) by 2-dimensional PCA projection.

increase_heat_washroom

deactivate_lights_bedroom

change_language_English_none

(a) FSC Utterance Set

lists_query
news_query

calendar_set

(b) SLURP

Figure 4: A visualization of speech representations (”.”)
and text representations (”+”) with different intents by 2-
dimensional PCA projection.

5. Conclusion
In this paper, we propose a novel approach called Cross-modal
Semantic Alignment before Fusion (CSAF) for two-pass E2E
SLU. Our method aligns the representations of the two modal-
ities into a shared semantic space and then fuses the aligned
representations. We employ a shared semantic memory trans-
former to obtain fixed-length semantic memories of the two
modalities and introduce a contrastive loss to align them. Be-
sides, we use a multi-modal gated network, which enables the
model to calibrate unimodal embeddings based on the contribu-
tions and create a common representation with them. We con-
duct experiments on two public datasets: FSC Challenge and
SLURP. The experimental results demonstrate that our model
outperforms the previous strong baselines. In the future, we
plan to explore how to leverage the pre-training task to improve
the performance of our model in low-resource scenarios.
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