
Leveraging Pretrained ASR Encoders for Efficient End-to-End Speech Intent
Classification and Slot Filling

He Huang, Jagadeesh Balam, Boris Ginsburg

NVIDIA, USA
{heh,jbalam,bginsburg}@nvidia.com

Abstract
We study speech intent classification and slot filling

(SICSF) by proposing to use an encoder pretrained on speech
recognition (ASR) to initialize an end-to-end (E2E) Conformer-
Transformer model, which achieves the new state-of-the-art re-
sults on the SLURP dataset, with 90.14% intent accuracy and
82.27% SLURP-F1. We compare our model with encoders pre-
trained on self-supervised learning (SSL), and show that ASR
pretraining is much more effective than SSL for SICSF. To
explore parameter efficiency, we freeze the encoder and add
Adapter modules, and show that parameter efficiency is only
achievable with an ASR-pretrained encoder, while the SSL en-
coder needs full finetuning to achieve comparable results. In ad-
dition, we provide an in-depth comparison on end-to-end mod-
els versus cascading models (ASR+NLU), and show that E2E
models are better than cascaded models unless an oracle ASR
model is provided. Last but not least, our model is the first E2E
model that achieves the same performance as cascading models
with oracle ASR. Code, checkpoints and configs are available.1

1. Introduction
Spoken language understanding (SLU) is an essential compo-
nent of conversational AI, which aims to extract semantic in-
formation directly from speech data. SLU has a very broad
scope, including intent classification [1], slot filling [2, 3, 4, 5],
speech emotion recognition [6, 7], question answering [8, 9],
etc. There are mainly two types of SLU models: (1) cascading
(ASR+NLU) models that first perform automatic speech recog-
nition (ASR) and then apply a natural language understanding
(NLU) model to the transcribed text; (2) end-to-end (E2E) mod-
els that directly predict the semantic output without predicting
transcriptions. Compared with its counterpart natural language
understanding (NLU), SLU is more challenging. On one hand,
errors will propagate from ASR to NLU in cascading SLU mod-
els. On the other hand, end-to-end SLU models cannot make
use of the pretrained large language models such as BERT [10].
To tackle these challenges, we use end-to-end SLU models that
do not have error propagation, and we also show that better per-
formance can be achieved by utilizing ASR encoders pretrained
on out-of-domain datasets.

In this paper, we study the speech intent classification and
slot filling (SICSF) task, which aims to detect user intents and
extract the corresponding lexical fillers for detected entity slots
at the same time, as illustrated in Figure 1. The most common
end-to-end approach in this task is the encoder-decoder frame-
work, where the encoder is responsible for extracting acoustic

1https://github.com/NVIDIA/NeMo/tree/main/
examples/slu/speech_intent_slot

Figure 1: An example of speech intent classification and slot
filling. An intent is composed of a scenario and an action, while
slots and fillers are represented by key-value pairs.

features from input audios, and the decoder is responsible for
decoding the features to semantic output of intents and slots.
Current works [3, 5] use encoders pretrained by self-supervised
learning (SSL) [11, 12]. However, there is a large domain gap
between the self-supervised learning task and the SICSF task,
which limits the benefits that SLU models can obtain from the
SSL-pretrained encoders. Some recent works [4, 5] also pro-
pose to train the SLU model with additional ASR task in a
multi-task loss, which is more tricky to train since it’s hard to
choose a proper weight to balance different loss terms. Also,
such multi-task approach wastes some network parameters in
learning the ASR decoder which is not used during inference
phase of the SLU task.

We tackle the SICSF problem with an end-to-end approach,
by using a Conformer-Transformer framework that casts the
task as a sequence-to-sequence problem. Based on the intuition
that the SICSF task can be treated as an audio-to-text problem,
we propose to use an encoder pretrained by automatic speech
recognition (ASR), which is also an audio-to-text task. The SSL
objective, however, focuses on distinguishing one feature from
the other features in the same sequence, which is very different
from the SICSF task. We propose that, since the ASR objective
is closer to the SICSF objective than the SSL objective, ASR-
pretrained encoders are more beneficial to the SICSF task than
SSL-pretrained encoders. Our main contributions are summa-
rized as follows:

• Effectiveness: We present a Conformer-Transformer model
with ASR-pretrained encoder that achieves new state-of-the-
art performance on the SLURP dataset [2], outperforming the
other end-to-end (E2E) baselines by a large margin. This val-
idates our hypothesis that ASR-pretrained encoders are more
suitable for this task than SSL-pretrained encoders because
of the task similarity between ASR and SICSF.

• Efficiency: We conduct extensive experiments on exploring
parameter efficiency of E2E models, including freezing the
encoder and using Adapters [13] in the encoder and finetun-
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Figure 2: The proposed model for speech intent classification and slot filling (SICSF). Here the semantics output, originally expressed
in Python dictionary format, is flattened as a text string.

ing on SLURP speech recognition data. Our results show that
the best parameter efficiency is only achievable when using
ASR-pretrained encoders, while models with SSL-pretrained
encoders need finetuning all parameters to work well.

• E2E vs. Cascading: We also compare the proposed end-to-
end (E2E) model with cascading models (ASR+NLU), and
show that cascading model can only outperform E2E models
when using an oracle ASR model. Also, our E2E model with
ASR-pretrained encoder is able to match the performance of
cascading model with oracle ASR, while all previous E2E
models fall behind.

• Our code and model checkpoints are open-sourced for use in
future research.

2. The Proposed End-To-End Approach
2.1. Model

Our model is based on the encoder-decoder framework. We
choose Conformer [14] as the encoder since it is one of most
popular ASR architectures used in production by many com-
panies (Microsoft [15], Google [14]). Based on the superior
performance of Conformer ASR models, we hypothesize that
the Conformer encoder can also be applied to a broader set of
audio-to-text tasks such as speech intent classification and slot
filling. However, unlike the ASR task that requires monotonic
input-output alignment, the speech intent classification and slot
filling task is not affected by the orders of predicted entities and
thus doesn’t require such monotonic property. Therefore, dif-
ferent from the monotonic CTC [16] and RNNT [17] decoders
that ASR models usually use, we choose Transformer [18] as
the decoder (see Figure 2), since it has the best global context
by letting features of each timestamp to attend to that of all other
timestamps.

The intent and slot semantics is formatted as a Python dic-
tionary, which is further flattened as a Python string object.
The semantics string is tokenized by SentencePiece [19], while
begin-of-sentence (BOS), end-of-sentence (EOS) and padding
(PAD) tokens are also added to obtain the target token sequence.
In this case, the SICSF task is formulated as an audio-to-text
problem similar to speech recognition (ASR).

2.2. Training

We initialize the encoder with a Conformer-CTC-large model
pretrained on NeMo ASR-Set 2, while the 3-layer Transformer
decoder is randomly initialized. To circumvent the input-output
alignment problem, we follow the seq2seq framework [20] and
optimize the model with negative log-likelihood (NLL) loss and
teacher-forcing. Specifically, given the encoder output hidden
states as H = [h1,h2, ...,hT ], and the target sequence labels

2https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/stt_en_conformer_ctc_large

Y = [y1, y2, ..., yL], the training objective is defined as:

L = −
L−1∑

i=1

logP (yi+1|yi, yi−1, ..., y1, H). (1)

2.3. Inference

During inference, the input to the decoder is a BOS token and
the encoded audio features, and beam search with width 32
and temperature 1.25 is used to obtain the predicted seman-
tics strings, which are then converted to Python dictionaries for
evaluation. The strings that have syntax errors during conver-
sion will be treated as empty dictionaries. Missing or invalid
values are replaced with “None” during conversion.

3. Experiments
3.1. Dataset and Settings

We use the popular SLURP [2] dataset, which contains around
84 hours of train, 6.9 hours of dev and 10.2 hours of test audios.
We use intent classification accuracy and the SLURP metrics
proposed in [2] for evaluation.

3.2. Implementation Details

Our model is implemented with PyTorch and NeMo3. We set
the tokenizer vocabulary size to 58, and each token is embedded
as a 512-dimension feature. We use Adam optimizer, with mo-
mentum [0.9, 0.98] and no weight decay. The learning rates for
encoder and decoder are 2e-4 and 3e-4 respectively. A Cosine
annealing scheduler with 2000 linear warm-up steps is applied.
The proposed model and its variants are trained on an NVIDIA
RTX A6000 GPU with batch size 32 for 100 epochs.

For the NLU model in cascading baselines, we use a vo-
cabulary size of 1024 for input text from ASR, while the out-
put vocabulary size is 512. The ASR model in cascading base-
line is initialized as the same in our E2E SLU model. Before
finetuning on SLURP ASR, the ASR model has word-error-rate
(WER) of 23.5 on SLURP test set. The WER decreased to 9.5
after finetuning on SLURP ASR data.

3.3. Comparison with Baselines

We compare the proposed model with three E2E base-
lines: SpeechBrain-HuBERT [3], ESPnet-Conformer [4] and
Wav2Vec-CTI-RoBERTa [5]. We also compare with two cas-
cading (ASR+NLU) baselines, where the ASR model is a
Conformer-CTC-large mode finetuned on SLURP, and the NLU
model is a Transformer with 3 encoder and 3 decoder layers.
Another cascading baseline with oracle ASR is also included.

We show the main results in Table 1. As we can see, the
cascading baseline with oracle ASR works better than the other

3https://github.com/NVIDIA/NeMo
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Table 1: Comparison with cascading and end-to-end baselines on SLURP [2]. LL60k refers to the LibriLight dataset [21], while LS960
refers to the LibriSpeech dataset [22]. “Trainable Params” refers to the number of parameters that are optimized during training on
SLURP dataset.

Intent SLURP Metrics

Model Trainable
Params (M)

SSL
Pretrained

ASR
Pretrained Accuracy Precsion Recall F1

Cascading (ASR+NLU)
Oracle ASR + Transformer 4 None None 90.40 83.09 80.19 81.61

Conformer-CTC + Transformer 127 None NeMo ASR-Set,
SLURP ASR 87.18 75.83 72.72 74.24

Conformer-CTC + Transformer 4 None NeMo ASR-Set 71.10 64.49 58.27 61.22
End-to-End

SpeechBrain-HuBERT-large [3] 317 LL-60k None 89.37 80.54 77.44 78.96
SpeechBrain-HuBERT-base [3] 96 LS-960 None 87.7 77.65 74.78 76.19

ESPnet-Conformer [4] 110 N/A N/A 86.30 N/A N/A 71.40

Wav2vec-CTI-RoBERTa [5] 200 LS-960 LS-960,
SLURP ASR 86.92 N/A N/A 74.66

NeMo-Conformer-Transformer-large 127 None NeMo ASR-Set 90.14 84.31 80.33 82.27

Table 2: Study on parameter efficiency. All models use the same
Conformer-Transformer architecture.

Freeze
Encoder

Use
Adapter

Trainable
Params (M)

Pretrained
(Task: Dataset) SLURP-F1

No No 127 SSL: LL60kh 77.22
Yes No 12 SSL: LL60kh 36.21
Yes Yes 13 SSL: LL60kh 43.28
No No 127 ASR: NeMo ASR-Set 82.27
Yes No 12 ASR: NeMo ASR-Set 72.59
Yes Yes 13 ASR: NeMo ASR-Set 77.54

SLU baselines, as is also observed in previous works [2, 5].
However, our E2E SLU model, with 82.27% SLURP-F1, is
able to match the performance of cascading models with or-
acle ASR, and outperforms the other E2E SLU models by a
noticeable margin. It can also be noted that our model with
127M parameters is able to achieve 2.3% higher SLURP-F1
than the second best SLU model with 317M parameters. Com-
pared with Wav2vec-CTI-RoBERTa [5], our model does not
require finetuning on SLURP ASR, which makes our model
more efficient to train. Overall, the superior performance of
our model suggests that using an encoder pretrained on large
ASR dataset is much more beneficial than encoders pretrained
by self-supervised learning in speech intent classification and
slot filling (SICSF). We will discuss this finding with more de-
tails in Section 3.5.1.

The cascading baseline, when not finetuned with ASR on
SLURP, has much lower performance than the other base-
lines. Meanwhile, when the cascading baseline is finetuned
on SLURP ASR, it’s able to reach better performance than
ESPnet-Conformer [4] and comparable slot filling performance
with Wav2vec-CTI-RoBERTa [5]. This shows that, cascading
ASR+NLU models, although have the drawback of propagat-
ing errors from ASR to NLU, still have the potential of getting
good performance.

3.4. Exploring Parameter Efficiency

Adapters [13] were proposed to improve models’ parameter ef-
ficiency in transfer learning for NLP, by adding only about 1%
of the whole network parameters to the frozen model while
achieving performance comparable to full finetuning. Each

Table 3: Ablation study on effectiveness of pretraining. All mod-
els use the same Conformer-Transformer-large network.

Intent SLURP Metrics
Pretrained

(Task: Dataset) Accuracy Precision Recall F1

ASR: NeMo ASR-Set 90.14 84.31 80.33 82.27
ASR: LS960h 92.17 81.15 77.33 79.19
SSL: LL60kh 89.40 77.90 76.65 77.22

None 72.56 53.59 53.92 53.76

Adapter consists of several multi-layer perceptrons with very
small intermediate dimensions (e.g., 32) and residual connec-
tions (Figure 3-Right). Since Adapters are proven to be very
effective in speech recognition as well [23, 24], here we also
study whether Adapters can help the SICSF task. As shown in
Figure 3-Left, Adapters are added to each Conformer layer in
the encoder of our model, while the encoder is frozen during
training. We apply Adapters to both ASR-pretrained and SSL-
pretrained encoders, and show the results in Table 2.

As we can see, for the SSL-pretrained encoder, merely
freezing it without adding Adapters leads to very low perfor-
mance, which is 40% absolute decrease from training the full
model. By adding about 1M parameters, Adapters are able
to improve the performance of SSl-pretrained encoders from
36.21% to 43.28%, which is about 7% improvement. On the
other hand, merely freezing the ASR-pretrained encoder has
72.59% SLURP-F1, which is almost double the performance of
SSL-pretrained encoder. This shows that the ASR-pretrained
encoder itself is already able to generate representative fea-
tures for the SICSF task, even without any finetuning. Mean-
while, adding Adapters to the frozen ASR-pretrained encoder
only improves the performance by around 5%, which is an even
smaller improvement than it is in the case of SSL-pretrained en-
coder. However, we can also see that adding Adapters to frozen
ASR-pretrained encoder is able to match the performance of
training the full model with SSL-pretrained encoder, and also
outperforms some baselines [4, 5] in Table 1. Although using
Adapters in frozen ASR-pretrained encoder still cannot match
the performance of finetuning the whole encoder, considering
the size of the model, it still achieves a good balance between
performance and network size. From these results, we can con-
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Figure 3: Left: Illustration of adding Adapter [13] modules to
a Conformer [14] layer, where multi-layer perceptrons (MLPs)
and layer-normalization are omitted for clarity. Right: Illus-
tration of an Adapter module, where non-linear activation is
omitted for clarity.

clude that having better parameter efficiency while maintaining
good performance is only achievable for ASR-pretrained en-
coders, while model with SSL-pretrained encoder still needs a
lot of parameters to work well, since the SICSF task is closer to
audio-to-text in ASR rather than the frame discrimination task
in SSL.

3.5. Ablation Study

3.5.1. Effect of Pretraining: ASR vs. SSL

We also try using SSL-pretrained encoder 4, and compare the
results with ASR-pretrained encoders. We also add a baseline
without any pretraining, and show the results in Table 3. As we
can see, training from scratch has almost 30% decrease from
the best model, while SSL-pretrained encoder with 77.22%
SLURP-F1 lies in between. This shows that pretraining is still
essential to the model’s performance. We also try using ASR
encoder pretrained on the LibriSpeech [22] dataset, which has
about 2% higher SLURP-F1 than SSL-pretrained encoder. Con-
sidering the fact that LibriLight [21] has 60k hours audio, while
LibriSpeech [22] only has 960 hours, we can see that ASR-
pretrained encoder is more efficient in utilizing pretraining data
than SSL-pretrained encoder. In addition, we try a Conformer-
Xlarge encoder with 5x the size of Conformer-large, pretrained
on LL60k [21], and find that it’s only with this extra large model
that using SSL-pretrained encoder can have a similar perfor-
mance (SLURP-F1=81.28%) as using ASR-pretrained encoder
(SLURP-F1=82.27%). In other words, using ASR-pretrained
encoders is also more cost-efficient in terms of model size.

3.5.2. Effect of Finetuning on SLURP ASR

We further explore the effect of finetuning the ASR-pretrained
encoder on SLURP ASR, and found that the performance does
not change much. The intent accuracy and SLURP-F1 for the
finetuned model are 90.28% and 82.08%, while with the ones
without finetuning on SLURP ASR are 90.14% and 82.27%.

4https://catalog.ngc.nvidia.com/orgs/nvidia/
teams/nemo/models/ssl_en_conformer_large

Table 4: Ablation study on output vocabulary size. All models
use the same Conformer-Transformer architecture.

Intent SLURP Metrics
Vocab Accuracy Precision Recall F1

58 90.14 84.31 80.33 82.27
256 90.12 83.09 79.47 81.24
512 90.13 83.19 79.77 81.44

1024 90.17 82.31 79.45 80.86

The reason for the similar performance is that the encoder pre-
trained on large ASR datasets already has the knowledge of
audio-to-text task, while finetuning on SLURP ASR only im-
proves the model’s knowledge on dataset statistics. However,
since later training on the SICSF task can also help the model
learn dataset statistics, the effect of finetuning on SLURP ASR
is less obvious.

3.5.3. Effect of Vocabulary Size

As performance of Confomer-based ASR models are usually
affected by vocabulary sizes, where CTC [16] decoder usu-
ally works better with smaller (e.g., 128) vocabulary while
RNNT [17] decoder is better with larger ones (e.g., 1024), here
We study the effect of different vocabulary size on the proposed
model, and show the results in Table 4. The intent accuracy
remains pretty stable with different vocabulary sizes, while the
best SLURP-F1 is obtained with the smallest vocabulary size.
This is different from what we have observed for cascading
models, where their performance grows as the output vocab-
ulary size grows, and saturates around size 512. It should also
be noted that cascading models perform badly with small input
vocabulary size (e.g., 58), which is because the input has more
diverse natural language while the output semantics has a more
limited set of words.

4. Conclusion
We present a Conformer-Transformer model for end-to-end
speech intent classification and slot filling (SICSF), where the
Conformer encoder is pretrained on a large collection of speech
recognition (ASR) datasets. Our model is able to achieve new
stat-of-the-art results on the SLURP dataset. We also compare
with cascading models, and show that our model can match
the performance of cascading model with oracle ASR, while
previous end-to-end models fall behind. We also study the ef-
fect of encoders pretrained by self-supervised learning (SSL),
and show that ASR-pretrained encoder achieves noticeably bet-
ter performance, since the SICSF objective is more similar to
ASR than SSL. We also explore the parameter efficiency of our
model, and show that using adapters in frozen ASR-pretrained
encoder can still achieve very good performance, while SSL-
pretrained encoder needs full finetuning to work well. Our code
and checkpoints are publicly available to benefit future research.
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