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Abstract
End-to-end models with large capacity have significantly im-
proved multilingual automatic speech recognition, but their
computation cost poses challenges for on-device applications.
We propose a streaming truly multilingual Conformer incorpo-
rating mixture-of-expert (MoE) layers that learn to only activate
a subset of parameters in training and inference. The MoE layer
consists of a softmax gate which chooses the best two experts
among many in forward propagation. The proposed MoE layer
offers efficient inference by activating a fixed number of param-
eters as the number of experts increases. We evaluate the pro-
posed model on a set of 12 languages, and achieve an average
11.9% relative improvement in WER over the baseline. Com-
pared to an adapter model using ground truth information, our
MoE model achieves similar WER and activates similar num-
ber of parameters but without any language information. We
further show around 3% relative WER improvement by multi-
lingual shallow fusion.

1. Introduction
An end-to-end (E2E) multilingual automatic speech recogni-
tion (ASR) model is appealing because of its potential to rec-
ognize multiple languages using a single model. There has
been significant effort in multilingual modeling using E2E mod-
els [1, 2, 3, 4, 5, 6, 7]. Previous studies on multilingual ASR
have investigated different model structures such as connection-
ist temporal classification (CTC) models [2], long-short term
memory [4], and attention based models [1, 3, 5, 6]. Among
them, streaming models [6, 8] are promising candidates for on-
device applications. By increasing the model capacity, [8] pro-
poses an on-device streaming multilingual RNN-T model and
achieves comparable recognition quality and latency compared
to monolingual models. To further increase model capacity, it
is crucial to keep computation low for on-device applications.

Other studies have also shown that increasing model capac-
ity is a key factor in improving performance. By increasing a
multilingual E2E model up to 1B size, [9] has improved quality
of all variants of the multilingual model. In [10], the authors
show that under a life-long learning strategy, the model per-
forms consistently better as the capacity increases up to 1B pa-
rameters. The same trend has been observed in a two-pass mul-
tilingual deliberation model [11]. More recently, the Whisper
model [12] and Google Universal Speech Model (USM) [13]
have achieved human-approaching performance with the help
of large-scale data and model sizes in billions of parameters.

Larger models come with more cost in training and infer-
ence. To improve the modeling efficiency, there have been sev-
eral approaches in leveraging language-specific components for
inference [6, 14, 15, 16]. However, how to predict language in-
formation reliably in a streaming fashion is a challenge itself.
Others improve efficiency by neural network pruning [17] or
mixture-of-expert type of models [18, 19, 20, 21, 22] (more dis-
cussion in Sect. 2).

In this work, we propose to use mixture-of-expert (MoE)
layers [23, 24] to replace the feed-forward network (FFN) in
the Conformer [25] for multilingual ASR. The MoE layer con-
sists of multiple FFNs and a gating network [24]. The gating
network is a softmax over the number of experts, and the out-
puts of the top two experts are combined in a weighted fashion
as the final output. The proposed model is thus sparse when
the number of total experts is greater than two. Such an MoE
layer has been used in NLP [23] as well as shallow fusion [26]
and achieved superior quality compared to their dense counter-
parts. By adding the MoE layers to the end FFN network of
the Conformer layers, we improve the average WER of 12 lan-
guages by 11.9% relative compared to the baseline. In another
comparison with a larger baseline (dense model) with a similar
total size as the MoE model, we show that the proposed model
achieves similar quality by activating only 53% of parameters
during inference.

We also compare to an adapter model based on [4, 27]. By
increasing the total number of experts while activating the top
two experts during inference, we achieve similar quality com-
pared to a ground truth language information based adapter
model. The two models activate the same number of param-
eters for inference, however, we note that our model does not
need any language information in inference and more straight-
forward in deployment. Finally, we further improve the MoE
model performance by around 3% relative by shallow fusion
using a multilingual neural LM.

2. Related Work
There have been several related mixture-of-expert approaches
for ASR modeling, but our work differs from them in the fol-
lowing ways. Our MoE study is for streaming multilingual
ASR compared to [18, 22], which are for monolingual ASR.
We show that our Conformer based MoE structure is effective
for multiple languages in Sect. 5.2. Compared to [18, 22],
our MoE model also works without using any shared embed-
ding network for expert routing. Other MoE models have been
proposed for image processing or natural language process-
ing (NLP) [20, 21]. In terms of model structure, DeepMoE
[20] uses embedding network for expert routing and the Switch
Transformer [21] activates only one expert layer layer. Further,
the performance of DeepMoE and Switch Transformer in ASR
is unclear. In multilingual ASR, a mixture of informed-expert
model is proposed in [16]. However, it needs language infor-
mation to select the expert, and the number of experts increases
linearly with the number of languages. In a similar line, a per-
language second pass model [14] and the adapter model [4, 27]
can also be considered as informed-expert models since the lan-
guage information is used to choose the corresponding module
(cascaded encoder or adapter). Compared to [14], the proposed
MoE model does not rely on any external language information
for routing and is thus more generic. Although [15] predicts the
language information for the second-pass, this increases both
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Figure 1: Conformer layer with mixture of experts at the posi-
tion of the end FFN layer.
training and inference complexity and potential error propaga-
tion in practical applications.

In summary, the novelty of our work are mainly two folds:
1) We have proposed an MoE-based Conformer for multilin-
gual ASR and have shown its effectiveness compared to dense
models and adapter models, and 2) Our proposed MoE model
is relatively simplistic, and does not require language informa-
tion compared to [14, 16] and any shared embedding network
for routing [18, 22].

3. Conformer with Mixture-of-Experts
Our model is based on [8] which uses a causal encoder and
we add a non-causal cascaded encoder [28] for better quality.
For both causal and non-causal encoders, we use Conformer as
the main building block. We use separate decoders for causal
and non-causal encoders and RNN-T loss for training (see Sect.
4.2.1 for more details).

A Conformer layer [25] consists of a multi-headed self-
attention and a convolution-based layer sandwiched by two
feed-forward networks (FFN). As shown in Fig. 1, to incor-
porate experts, we use an MoE layer [24, 23] to replace the end
FFN in the Conformer layers. Similar to [24, 23], the MoE
layer consists of a routing network and multiple experts, each
of which is an FFN. To route a speech frame, we first use a
softmax to estimate expert weights:

gl = Softmax(Wl · x) (1)

where x is the output of the previous layer, and Wl is the weight
matrix for the router at lth Conformer layer. Then the input is
routed to the two experts with the highest weights (i.e., top 2
experts) and their outputs are weighted and summed to produce
the final output:

y =
2∑

i=1

gl,i ∗ el,i (2)

where gl,i is the weight for the top ith expert at the lth layer.
el,i is the corresponding output of the expert. We use the top

Locale Language Counts (M)

en-US English (USA) 18.1
zh-TW Mandarin 0.5
fr-FR French 10.8
de-DE German 3.8
ja-JP Japanese 10.9
es-US Spanish (USA) 25.2
es-ES Spanish (Spain) 20.3
ar-EG Arabic 3.8
it-IT Italian 13.0
hi-IN Hindi 14.2
pt-BR Portuguese 13.4
ru-RU Russian 5.3

Total 139.4
Table 1: Training data for 12 language locales. Utterance
counts are in millions (M).

2 experts for both training and inference. In Fig. 1, we replace
the end FFN of the Conformer layer with the MoE layer. We
have also tried replacing the start FFN layer or both of them
(see more results in Sect. 5.1).

We use the RNN-T loss [29] for training the Conformer
model with MoE layers. To ensure load balance across differ-
ent experts, we use the same auxiliary loss as in [30]: laux =
1
N

∑N
i=1

ci
S

·mi, where mi is the average number of times ith
expert is selected over all frames, and ci is the expert decision
count for ith expert derived from the top-2 operation. We use
the mean gates per expert mi ·(ci/S) as a differentiable approx-
imation for (ci/S)2 (more details in [30]).

4. Experiment Setup
4.1. Data

Our 12-language group consists of English (USA), Mandarin,
French, German, Japanese, Spanish (USA), Spanish (Spain),
Arabic, Italian, Hindi, Portuguese, and Russian (see Table 1 for
more details). Our supervised training data of 12 language lo-
cales come from multiple domains such as Voice Search and
YouTube. In total, they constitute around 139.4M utterances.
The training data is anonymized and human transcribed. The
per-language number of utterances ranges from 500K to 25.2M.
For each language, we use a test set with utterances sampled
from the Voice Search traffic ranging from 1.4K to 10K. The
test sets do not overlap with the training set, and are also
anonymized and human transcribed. We use word error rate
(WER) for evaluation, and for languages such as zh-TW, the
WER is computed based on characters. We are aware of the
sensitive nature of the ASR research and other AI technologies
used in this work. We thus ensure that this work abides by the
Google AI Principles [31].

4.2. Modeling Details

4.2.1. Baseline Multilingual Model

We use a language agnostic multilingual model similar to [8] as
the baseline. The baseline model consists of a 7-layer causal
Conformer encoder and a 10-layer non-causal cascaded en-
coder. The causal encoder includes two blocks separated by
a stacking layer. The first block consists of an input projection
layer and 3 convolution layers. The stacking layer concatenates
two neighboring encodings in time to form a 60-ms frame rate.
The second block starts with a 1024-dim Conformer layer, and
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B1 E1 E2 E3

Model No MoE MoE-Start MoE-End MoE-Both

Total Size 180M 400M 400M 640M
Inf. Size 180M 211M 211M 246M
en-US 9.4 8.4 8.3 8.0
fr-FR 10.8 9.3 9.3 8.6
es-US 6.8 6.0 6.0 5.6
es-ES 6.6 5.2 4.9 4.8
ja-JP 15.5 13.1 12.9 12.0
zh-TW 9.4 9.2 9.1 9.2
de-DE 14.5 12.8 12.6 11.9
it-IT 10.4 8.8 8.8 8.1
ar-EG 12.3 10.9 10.8 10.3
pt-BR 7.6 7.0 6.9 6.5
ru-RU 13.0 11.0 10.9 10.4
hi-IN 19.6 19.5 19.2 19.1
Avg. WER 11.33 10.10 9.98 9.54

Table 2: WERs (%) by placing the MoE layers at different
places of the cascaded Conformer encoder.

E2 E4 E5

Model 8-Exp. 4-Exp. 2-Exp.

Total Size 400M 295M 211M
Inf. Size 211M 211M 211M
en-US 8.3 8.5 8.6
fr-FR 9.3 9.9 9.9
es-US 6.0 6.2 6.3
es-ES 4.9 5.7 5.8
ja-JP 12.9 14.2 14.5
zh-TW 9.1 8.7 9.4
de-DE 12.6 13.6 13.7
it-IT 8.8 9.2 9.2
ar-EG 10.8 11.2 11.3
pt-BR 6.9 6.8 7.2
ru-RU 10.9 11.3 11.5
hi-IN 19.2 19.5 19.5
Avg. WER 9.98 10.40 10.58

Table 3: WERs (%) by reducing the number of MoE layers.

then a projection layer to reduce the model dimension back to
512 for the rest of the causal layers. Note that the causal Con-
former layers uses causal convolution and left-context attention
and is thus strictly causal. Secondly, the non-causal layers are
cascaded [28] to the causal encoder output. The 10 layers of
non-causal Conformer layers have a dimension of 640, and a to-
tal right-context of 0.9 sec. We use separate decoders for causal
and non-causal encoders to achieve the best quality.

Each transducer decoder consists of a prediction network
and a joint network [29]. For the prediction network, we use
two embedding layers to embed current and previous tokens
separately and concatenate the embeddings as output. The joint
network is a single feed-forward layer of 640 units. We use a
hybrid autoregressive transducer (HAT) version of the decoder
[32]. A softmax is used to predict 16,384 wordpieces. We gen-
erate the wordpieces using mixed transcripts pooled from all
languages. The baseline multilingual transducer model has a
total of 180M parameters.

E2 E6 E7

Model MoE-End MoE-End-Odd MoE-Conf1

Total Size 400M 295M 203M
Inf. Size 211M 196M 183M
en-US 8.3 8.5 8.8
fr-FR 9.3 10.1 10.6
es-US 6.0 6.4 6.5
es-ES 4.9 5.9 6.2
ja-JP 12.9 14.6 14.8
zh-TW 9.1 8.6 8.9
de-DE 12.6 13.7 14.1
it-IT 8.8 9.3 9.9
ar-EG 10.8 11.4 12.0
pt-BR 6.9 6.8 7.2
ru-RU 10.9 11.3 12.0
hi-IN 19.2 19.4 19.5
Avg. WER 9.98 10.50 10.88
Table 4: WERs (%) by reducing the number of MoE layers.

4.2.2. MoE Conformer

We replace the start, the end, or both FFNs of the Conformer
layers by MoE layers (see experiments in Sect. 5.1) in the cas-
caded encoder of the baseline model. We use up to 24 experts in
our experiments and dynamically choose the top 2 for training
and inference. The expert FFNs have the same structure as the
Conformer FFNs. We use the auxiliary loss in Sect. 3 to en-
courage load balance between experts. In training, we compute
an over-capacity ratio which tracks whether certain experts are
overloaded. It is calculated as, for each batch, the percentage of
tokens going through a specific expert above a threshold. Our
training shows that most experts have over capacity ratios rang-
ing from 0.01 to 0.2 and only 10% of them range from 0.2 to a
maximum value of 0.35, which is quite balanced. The model is
trained to predict the same 16,384 wordpieces as the baseline.

We divide the input speech using 32-ms windows with a
frame rate of 10 ms. 128D log-Mel filterbank features are ex-
tracted from each frame and then stacked together from 3 pre-
vious continuous frames to form a 512D input vector. These
input vectors are further downsampled to have a 30-ms frame
rate. We use SpecAug [33] to improve model robustness against
noise. Two frequency masks with a maximum length of 27 and
two time masks with a maximum length of 50 are used.

5. Results and Comparisons
5.1. Ablation Studies

5.1.1. Place of MoE Layers

In Table 2, we add the MoE layers to different places of the
Conformer layer and each MoE layer has 8 experts. We show in
Table 2 that using MoE to replace the start FFN (i.e. MoE-Start)
in a Conformer layer improves the baseline (B1) significantly
by around 10.9% relative on average. We note the improvement
is uniform and significant for all languages. To ablate on the lo-
cation of where MoE layers are added, we also add MoE layers
to the end FFN of the Conformer layer (E2, MoE-End), or both
start and end FFNs (E3, MoE-Both). We see in Table 2 that
using MoE at the end FFN is slightly better than at the start.
Using MoE for both start and end FFN works best but it also
increases the inference model size because we have more MoE
layers at inference. We are aware that the improvement of MoE
models in Table 2 may be due to the increased inference model
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ID Model Total
Size

Inf.
Size

WER (%) Avg.
WER (%)en-US fr-FR es-US es-ES ja-JP zh-TW de-DE it-IT ar-EG pt-BR ru-RU hi-IN

B1 Multi. Cas. 180M 180M 9.4 10.8 6.8 6.6 15.5 9.4 14.5 10.4 12.3 7.6 13.0 19.6 11.33
E2 MoE-End 400M 211M 8.3 9.3 6.0 4.9 12.9 9.1 12.6 8.8 10.8 6.9 10.9 19.2 9.98
B2 Larger B1 400M 400M 8.1 9.1 6.2 5.4 14.5 9.3 12.4 8.1 10.7 6.4 10.6 19 9.98
B3 B1+Adapter 280M 187M 7.3 9.4 6.5 5.5 14.4 8.5 13.2 8.7 10.0 6.8 11.2 19.1 10.05
E8 End-3-8 336M 187M 8.5 9.3 6.2 5.5 14.1 8.9 13.4 9.1 11.1 6.8 11.2 19.1 10.27
E9 End-3-16 532M 187M 8.1 9.6 6.0 5.3 13.5 8.9 12.8 8.9 11.2 6.7 11.0 19.4 10.12
E10 End-3-24 729M 187M 7.9 9.8 6.1 5.3 13.4 9.2 12.7 8.9 11.1 6.6 10.7 19.4 10.09
E11 E2+SF +128M LM +128M LM 8.1 8.0 5.7 4.8 12.4 10.4 11.6 7.7 10.6 6.1 10.3 20.4 9.68

Table 5: Comparison of multilingual baseline models, adapter models, and MoE models. The numbers in bold represent best WER for
any language.

size. In Sect. 5.2, we will compare to a larger baseline which
has a similar size as the MoE model at the inference time.

We have also tried adding MoE layers to the causal encoder,
and the average WER is significantly worse. In following sec-
tions, we use MoE-End given the slightly better performance
and efficiency.

5.1.2. Number of Experts

To reduce the total model size, we tried varying the number of
experts in the MoE layer in Table 3. When we reduce the num-
ber of experts, the model total size decreases while the inference
size stays the same because we always use the top 2 experts dur-
ing inference. We see that the performance drops significantly
when we decrease the expert number from 8 to 4, and relatively
slowly from 4 to 2. This shows the model has been able to uti-
lize the capacity from all experts. We also note that E5 degener-
ates to a dense model and the performance difference between
B1 and E5 is due to model size. We have also tried further in-
creasing the number of experts and obtained better performance
in Sect. 5.2.

5.1.3. Reduce Number of MoE Layers

Since reducing the number of experts reduces total model size
but not inference model size, we have also tried reducing the
number of MoE layers to make inference more efficient. In Ta-
ble 4, we reduce the number of MoE layers by only adding it to
every other Conformer layer (MoE-End-Odd), or only the first
Conformer layer (MoE-Conf1). We see that by reducing the
number of MoE layers, the model performance drops signifi-
cantly. However, we note that even adding one MoE layer at the
first Conformer layer is helpful. Although it increases the base-
line size by only 3M parameters, it reduces the average WER
from 11.33% to 10.88%.

5.2. Comparisons

In Table 5, we first compare the multilingual cascaded encoder
baseline (B1) to the multilingual MoE-End model (E2), and E2
reduces the average WER by 11.9% relative compared by B1.
We then increase the cascaded encoder of B1 to a 896-D 17-
layer Conformer to have a total size of 400M (i.e. B2), which
is the same size as the multilingual MoE model (E2). We show
that B2 and E2 have the same average WERs: 9.98%, but the
MoE model is around 47% more efficient (211M vs 400M) in
terms of model parameters activated for inference. We note that
in practice, one needs to implement inference in a way that only
activated experts are selected for forward propagation in order
to achieve this efficiency.

We also compare to an adapter model (B3) which adds
residual adapters [34] to the baseline. The adapters we use fol-
low a similar structure in [4, 27], i.e., we insert a 512-D residual
adapter after every Conformer layer in the cascaded encoder. In
both training and decoding, ground truth language information

is used to select the corresponding adapter. To compare to the
adapter model fairly in inference (same activated parameters),
we first reduce the FFN multiplier in the MoE layer from 4 to
3 and then increase the number of experts from 8, 16, to 24.
The results in Table 5 show that when the number of experts
increases from 8 to 16, the MoE model improves because of in-
creased model capacity. When we increase the experts to 16 or
24, the MoE models (E9, E10) perform similarly to the adapter
model on average (10.12% or 10.09% vs 10.05%). However, we
note that we do not explicitly use any language information in
inference for MoE models while the adapter model uses ground
truth language information. We also note that the improvement
from 16-expert to 24-expert model (E9 vs E10) is slight. This
is probably because we only have 12 languages and the total
number of experts may have exceed the needed capacity.

5.3. Further Improvement by Shallow Fusion

We further train a 128M multilingual LM by pooling the text
portion of the supervised training data and text-only data from
the 12 languages. Our text-only data covers 12 languages, and
the sentences for each language ranges from 3.9B to 451B.
The sentences are sampled from anonymized search traffic
across multiple domains such as Web, Maps, News, Play, and
YouTube. We use a 12-layer Conformer LM for shallow fusion
(SF). The Conformer LM has a model dimension of 768 and a
feedforward layer dimension of 2048. A left context of 31 to-
kens is used to attend to the previous tokens. We use 6 heads
for self-attention. The total model size is around 140M. We use
the same wordpiece model as the MoE model.

As shown in Table 5, shallow fusion further improves WER
for almost all languages. The average WER reduction is around
3% relative, with the largest improvement of around 14.0% for
fr-FR. We got regression for a couple of languages: zh-TW and
hi-IN. The regression on zh-TW is probably because some of
our text-only data contain Cantonese transcripts which is dif-
ferent from zh-TW. As for hi-IN, it has the largest amount of
text-only data (around 451B sentences) and we may need to re-
search filtering technique to better match the Search domain.

6. Conclusion
We propose a streaming multilingual Conformer model with
mixture-of-expert (MoE) layers. By adding the MoE layers to
the end FFN network of the Conformer, we improve the av-
erage WER of 12 languages by 11.9% relative compared to
the baseline. The proposed model is also efficient: Activating
only 53% of parameters during inference compared to a large
baseline with similar quality. We also achieve similar quality
compared to a ground truth language information based adapter
model with increased experts but activating the same number
of parameters in inference and not using language information.
Further improvements have been obtained by multilingual shal-
low fusion.
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