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Abstract
Fine-tuning is a popular method for adapting text-to-speech
(TTS) models to new speakers. However, this approach has
some challenges. Usually, fine-tuning requires several hours of
high quality speech per speaker. Fine-tuning might negatively
affect the quality of speech synthesis for previously learned
speakers. In this paper, we propose an alternative approach
for TTS adaptation based on using parameter-efficient adapter
modules. In the proposed approach, a few adapter modules are
added between the layers of the pretrained network. The pre-
trained model is frozen, and only the adapters are fine-tuned to
the speech of a new speaker. Our approach will produce a new
model with a high level of parameter sharing with the original
model. Our experiments on LibriTTS, HiFi-TTS and VCTK
datasets validate our adapter-based method through objective
and subjective metrics. The code is open-sourced1 and the au-
dio samples are available on our demo page2.
Index Terms: Text-to-speech, speaker adaptation, adapter, few-
Shot Learning

1. Introduction
Neural text-to-speech (TTS) models have significantly im-
proved in recent years [1, 2, 3, 4, 5] . These models can syn-
thesize a high-quality natural human voice in single-speaker [6]
and multi-speaker [7, 8, 9] settings after being trained on sev-
eral hours of high-quality recordings. However, to adapt new
speaker voices, these TTS models are typically fine-tuned using
several hours of studio quality data, which makes scaling TTS
models to a large number of speakers very expensive.

Fine-tuning TTS models to new speakers may be challeng-
ing for a number of reasons. First, the original TTS model
should be pre-trained with a large multi-speaker corpus so that
it generalizes well to new voices and different recording condi-
tions. The second challenge is to reduce the amount of speech
required to add a new speaker to the existing TTS model.
Third, fine-tuning the whole TTS model is very parameter in-
efficient, since one will need a new set of weights for every
newly adapted speaker. Currently, there are two approaches to
making the adaptation of TTS more efficient. The first approach
is to modify only parameters directly related to speaker identity
[10, 11, 12, 13]. The alternative approach is based on adding
a light voice conversion post-processing module to the baseline
TTS model [14].

In this paper, we propose a new parameter-efficient method
for adapting new speakers to the pre-trained multi-speaker TTS
model shown in Fig. 1. First, we pre-train a base multi-speaker

1https://github.com/NVIDIA/NeMo
2https://hsiehjackson.github.io/adapter-tts-demo/
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Figure 1: The proposed pipeline for adaptation of multi-speaker
TTS model for new speakers. (a) Pre-train a multi-speaker Fast-
Pitch model. (b) Freeze weights of pre-trained FastPitch model
and add adapter modules. (c) Only the adapters and speaker
representations are fine-tuned for new speaker. (d) Inference by
sharing the same model and plugging the lightweight, speaker-
specific module.

TTS model on a large and diverse TTS dataset. To adapt the
model to new speakers, we add a few lightweight modules in
between the layers of the base model. We used vanilla adapters
[15], unified adapters [16, 17, 18], or BitFit [19]. Then pre-
trained model is frozen, and only adapters are fine-tuned on new
speaker data. During inference, we can share most of the model
weights and insert small modules to synthesize a new speaker
voice. The contributions of this paper are:
• We propose a new adapter-based framework for efficiently

adapting new speakers to the TTS model without forgetting
previously learned speakers.

• We validate our design through a comprehensive ablation
study across different types of adapter modules, amounts of
training data, and recording conditions.

• We demonstrate that adapter-based TTS tuning performs
similarly to full fine-tuning while requiring significantly less
compute and data.

2. Method
In this section, we first describe the architecture of our pre-
trained multi-speaker FastPitch – a non-autoregressive TTS
model conditioned on speaker representations, as shown in
Fig. 2. Next, we introduce parameter-efficient adapter mod-
ules including vanilla adapter, unified adapters, and BitFit
(see Fig. 3). Finally, we explain how we insert or unfreeze
the lightweight learnable modules to fine-tune our pre-trained
model for speaker adaptation.
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Figure 2: Architecture of proposed multi-speaker FastPitch. It is
composed of phoneme encoder, mel-spectrogram decoder, dura-
tion and pitch predictor, aligner, and speaker encoder. We con-
trol speaker identity by using conditional layer normalization
(CLN) and concatenating inputs with speaker representation.

2.1. Base multi-speaker TTS model

FastPitch We use FastPitch [5] as base TTS model. Fast-
Pitch is composed of four components including two feed-
forward transformer (FFT) stacks as phoneme encoder and mel-
spectrogram decoder, and two convolutional modules as pitch
and duration predictor. The encoder operates on the input
phoneme tokens x and produces a hidden state h which is used
to predict the average pitch of each token p̂ and duration d̂ by
the pitch and duration predictor respectively. The decoder takes
the length-regulated hidden representations from the sum of en-
coder outputs h and pitch p̂ to produce the mel-spectrogram se-
quence ŷ. To train the pitch predictor, we use the ground-truth
pitch p, derived using PYIN [20] and averaged over the input to-
kens. For the duration predictor, we use a learnable aligner from
[21]. The training loss is composed of MSE between predicted
and ground-truth modalities plus the alignment loss Lalign:

L = ||ŷ − y||22 + α||p̂− p||22 + β||d̂− d||22 + γLalign.

Speaker Representation Typically, speakers are represented
by adding a speaker embedding table to the TTS model. The
limitation of this approach is that it cannot generalize to out-of-
sample speakers. Therefore, we combine speaker embeddings
(SE1) from a look-up table with speaker embeddings (SE2)
obtained from global style tokens (GST) [22] for a particular
speaker. GST embeddings capture prosodic styles for a par-
ticular speaker. From a reference spectrogram, the convolu-
tional recurrent neural network-based encoder learns the style
tokens, and the contribution weights of the tokens are learned
by a multi-head attention layer. By adding (SE1) and (SE2),
the final speaker embedding SEfinal is obtained. The bene-
fit of this method is that we can learn a wide range of acoustic
expressiveness without any explicit style or prosody labels for
unseen speakers.
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Figure 3: Illustration of parameter-efficient tuning modules in
transformer architecture. LoRA and Prefix Tuning are only used
in FFTs while Adapter and BitFit can be applied to any compo-
nents in FastPitch.

Multi-Speaker FastPitch Each component of FastPitch: en-
coder, decoder, pitch predictor, duration predictor, and aligner,
was conditioned using a speaker representation vector. The
inputs to each component are concatenated with the speaker
representation vector. Following [13], we leverage conditional
layer normalization (CLN) to better condition our model with
the speaker representation. The CLN network is made up of two
linear layers that project the speaker representation vector into
scale and bias vectors. We substitute all normalization layers in
the encoder, pitch and duration predictor, and decoder with the
CLN layer.

2.2. Adapter Modules

Vanilla Adapter Vanilla Adapters [15] are small modules in-
serted between layers of a frozen pre-trained network. During
training, the gradient only updates the adapters while other pa-
rameters are fixed. The adapter layer generally uses a down-
projection feed-forward network (FFdown) to project the in-
put to a lower dimensional bottleneck, followed by a non-linear
activation function and an up-projection feed-forward network
(FFup). To stabilize training, a near-identity initialization is
required, so the adapter has a skip-connection internally. With
the skip connection, the original network can stay unaffected
when training starts. In our design, we optionally add dropout
and layer normalization as well as the zero initialization of the
final layer to serve this module as an identity operation. More-
over, instead of placing adapters inside transformer layers as in
[15], we propose to insert them after the outputs of each trans-
former layer. Specifically, we generalize adapters to be inserted
after any module.

Unified Adapters A unified framework has been developed
in [18] to integrate multiple parameter-efficient modules, in-
cluding vanilla adapters and their variants like LoRA [16] and
Prefix Tuning [17]. LoRA injects trainable low-rank matrices
into the self-attention network in each transformer layer to up-
date the query and key. The architecture is similar to that of an
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Table 1: Comparison of parameter-efficient methods and ablation study of speaker-related modules on objective metrics. We weighted
mean looked-up speaker embeddings as new speaker embedding and unfreeze CLN as trainable modules.

Method SECS ↑ CFSD ↓ MSEP ↓ MSED ↓ Params

Different parameter-efficient methods
BitFit 0.452 56.4 71.0 19.1 2.2M

PrefixTuning (FFTs) 0.067 83.2 75.6 22.7 0.6M
LoRA (FFTs) 0.141 62.7 77.7 22.3 2.8M

Vanilla adapter (FFTs) 0.568 30.0 65.9 21.3 2.4M

Different speaker-related modules
Vanilla adapter (FFTs/Predictors/Aligner) 0.575 28.3 62.7 16.9 3.5M

+ speaker embedding 0.586 27.2 63.6 16.2 3.5M
+ speaker embedding + CLN 0.540 46.9 66.8 17.2 7.8M

speaker embedding + CLN [13] 0.513 53.5 68.0 21.7 4.3M
Full fine-tuning 0.604 31.0 73.8 19.7 53.4M

adapter but without an activation function and with a fixed scal-
ing scalar. Prefix Tuning prepends trainable vectors to the keys
and values of the self-attention network in each transformer
layer. In other words, we concatenate the original key and value
matrices with additional prefix vectors and perform multi-head
attention as usual. Compared to Adapter, LoRA and Prefix Tun-
ing are only applied to self-attention network in transformers.
We also use another simple tuning approach BitFit [19]. This
approach only updates bias vectors while fixing other parame-
ters in the pre-trained model.

2.3. Parameter-efficient fine-tuning

To adapt to the new speaker adaptation data, we only update the
parameter-efficient modules and speaker representation mod-
ules, keeping the rest of the weights in the pre-trained FastPitch
frozen. First, we insert parameter-efficient modules in our pre-
trained model. We add a vanilla adapter to the phoneme en-
coder, mel-spectrogram decoder, pitch and duration predictor,
as well as the aligner. We experimented by adding LoRA and
Prefix Tuning to the self-attention network in the encoder and
decoder. BitFit can be used in any layer that contains bias terms.
Second, as described in the Speaker Representation section of
2.1, we obtain speaker embedding (SE2) from GST using a
reference spectrogram. We add this speaker embedding with
speaker embedding (SE1) obtained by weighted mean of all
pre-trained speaker embeddings from lookup table to form the
final speaker embedding SEfinal as shown in Figure 2. The
weights were learned from gradients during fine-tuning. Third,
we also unfreeze the linear layers of scale and bias in each CLN
because this module’s effectiveness in controlling speaker iden-
tity has been verified in [13]. Thus, with this small number of
trainable parameters, we can optimize our TTS model for new
speaker adaptation in a parameter-efficient way.

3. Experiments and Results
3.1. Dataset

We used LibriTTS [7] for pre-training. From the original train-
clean-360 set, we choose the top 100 speakers with the high-
est amount of data, totaling 42.5 hours. The top five longest-
duration speakers from the original test-clean set are used to
create our test set of 10 unseen speakers (5 men and 5 women)
for the evaluation of speaker adaptation. To validate the general-
ization abilities to multiple acoustic conditions, we experiment
on VCTK [8] and HiFi-TTS [9] datasets. To simulate few-shot

scenario, the test sets are composed of 15 minutes data for each
speaker. For each test speaker, we randomly choose 20 unseen
utterances to evaluate the adaptation voice quality.

After the data collection, we normalize and tokenize the
raw text sequence into phoneme tokens. Also, we pre-process
the speech waveform into mel-spectogram under the sampling
rate 22kHz and pre-compute the pitch [20] and alignment prior
[21] before training.

3.2. Experiment Setup

We pre-train multi-speaker FastPitch for 500 epochs on 8 V100
GPUs with batch size 16 and learning rate 1×10−3. In the fine-
tuning stage, we freeze all model parameters and only update
the proposed speaker representation and parameter-efficient
modules. We train the model as well as our baselines on a sin-
gle NVIDIA A5000 GPU for ∼1500 steps using Adam opti-
mizer, batch size 8 and 2× 10−4 learning rate. The adaptation
process may take 10 to 15 minutes depending on the data size.
We use HiFi-GAN [23], trained on mel-spectrograms from pre-
trained FastPitch, as the vocoder to convert mel-spectrograms to
waveforms. The vocoder was not fine-tuned on the new adapted
speakers.

3.3. Evaluation Metrics

To measure the voice quality, we conduct both objective and
subjective evaluations of the synthesized and ground-truth
speech. For objective evaluation, we first calculate the aver-
age Speaker Embedding Cosine Similarity (SECS) between the
reference and measured audios by a speaker verification model
[24] to estimate speaker similarity. Further, we compute Condi-
tional Fréchet Speech Distance (CFSD) [14] between the gen-
erated speech and actual recording to measure signal quality.
Besides, we also evaluate mean square error for pitch (MSEP )
and duration (MSED) to access prosody similarity. The error is
computed against ground-truth speech.

For subjective evaluation, we conduct human evaluations
with a 5-scale MOS (mean opinion score) for naturalness and
SMOS (similarity MOS) for speaker similarity on Amazon Me-
chanical Turk. Each audio sample is rated by 20 workers. We
average the scores of all speakers as the final scores.

3.4. Results

We use four voices (two males and two females) to study how
different types of adapters and speaker-related modules de-
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Table 2: Comparison of different amount of training data on both subjective and objective metrics. We fine-tune adapters in all
FastPitch components and the weights to average looked-up speaker embeddings as the adapter results shown here. Note that we omit
×10−3 in reported MSE scores for simplicity.

Method Trainset, min MOS ↑ SMOS ↑ SECS ↑ CFSD ↓ MSEP ↓ MSED ↓

Vanilla adapter
1 3.81 ± 0.04 3.38 ± 0.05 0.421 31.4 129.5 25.2
5 3.84 ± 0.04 3.50 ± 0.05 0.466 26.9 108.3 21.5

15 3.83 ± 0.04 3.46 ± 0.05 0.492 24.2 90.2 19.1
60 3.86 ± 0.04 3.47 ± 0.05 0.520 23.2 119.6 18.3

Full fine-tuning
1 3.56 ± 0.04 3.34 ± 0.05 0.461 35.4 135.6 30.4
5 3.72 ± 0.04 3.44 ± 0.05 0.522 26.2 102.6 25.8

15 3.77 ± 0.04 3.46 ± 0.05 0.537 25.4 90.5 24.6
60 3.75 ± 0.04 3.43 ± 0.05 0.542 22.1 106.4 22.9

Table 3: Comparison of datasets with different acoustic conditions on subjective metrics.

MOS ↑ SMOS ↑
Method LibriTTS VCTK HiFi-TTS LibriTTS VCTK HiFi-TTS

Recording 4.11 ± 0.03 3.99 ± 0.03 4.02 ± 0.03 3.82 ± 0.04 3.69 ± 0.04 3.62 ± 0.04

Vanilla adapter 4.02 ± 0.03 3.82 ± 0.04 3.84 ± 0.04 3.45 ± 0.04 3.22 ± 0.05 3.36 ± 0.04
Full fine-tuning 3.92 ± 0.04 3.83 ± 0.04 3.79 ± 0.04 3.37 ± 0.04 3.26 ± 0.04 3.31 ± 0.04

scribed in section 2.3 affects the quality of TTS adaptation. The
results are shown in Table 1.

When inserting parameter-efficient modules in FFTs in the
encoder and decoder blocks, vanilla adapters significantly out-
perform other approaches on all metrics except duration error.
These results may be attributed to the locations we inserted
modules. For language, the self-attention layer plays a crucial
role, so a small update on this module can obtain good perfor-
mance, such as LoRA and Prefix Tuning. For speech, however,
an update of the convolution layer is essential, which is why the
vanilla adapter had better performance.

Next, we insert adapters into predictors and aligner. Adding
weighted mean speaker embedding improves the performance
while unfreezing CLN may degrade the speech metrics. More-
over, vanilla adapters get better scores than just using speaker
embedding and CLN [13], and they obtain comparable quality
to full fine-tuning when using only 7% parameters.

After validating the best design for FastPitch adaptation,
we study how much training data is required for this setting,
as shown in Table 2. The proposed method outperforms full-
model fine-tuning under different data settings. We find that
listeners can hardly recognize quality differences even if the
model was fine-tuned with vanilla adapters under only 5 min-
utes of the speech data for new speakers, although objective
metrics still demonstrate the improvements for larger sets.

Finally, we adapted the model on speakers from the VCTK
and HiFi-TTS datasets to check how the proposed method per-
forms when a new speaker’s speech is recorded under differ-
ent conditions compared to the LibriTTS dataset used for pre-
training. In Table 3, vanilla adapters outperform full fine-tuning
on naturalness (MOS) and speaker similarity (SMOS) for Lib-
riTTS and HiFi-TTS datasets while obtain similar performance
for VCTK dataset. These results show our framework can be
generalized to diverse recording conditions.

4. Conclusion
In this work, we propose parameter-efficient method for the
adaptation of multi-speaker TTS models to new speakers. The
new speaker adaptation is based on adding small adapter mod-

ules to the base model. We keep the weights of the base
model frozen, and only the parameters of adapters and speaker
embeddings are fine-tuned on new speaker data. The experi-
ments show proposed method achieves high speech naturalness,
speaker and prosody similarity while requiring significantly less
compute. It also performs well even in a low-data setting.
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