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Abstract
This study investigates praise estimation, the task of estimating
the existence of preferable behaviors of a speaker in a conversa-
tional video. To estimate praises from multimodal information,
considering synchronized behavior across modalities is impor-
tant. Such cross-modal synchronization can be modeled by the
conventional multimodal Transformer in a time-axis concatena-
tion architecture because it models relevance between all time
steps of all input modalities using attention matrices. However,
the attention matrices are so high-dimensional that the model
training can be difficult with a limited amount of training data.
To alleviate this problem, we propose introducing a loss func-
tion representing the prior knowledge that the attention should
link around the synchronized time steps across the input modal-
ities. Our experiments on a business negotiation conversation
corpus showed that the proposed method could improve the
praise estimation’s macro F1.
Index Terms: conversation support system, multimodal analy-
sis, multimodal Transformer, synchronization

1. Introduction
Due to the impact of COVID-19, daily conversations have been
shifting from face-to-face to online. Since it is relatively easy to
store data on online conversations and for machines to intervene
in such interactions, conversation support systems [1–6] can be
more prevalent. They often visualize and give feedback on ver-
bal and non-verbal information such as fillers, facial emotions,
and speech duration. Estimating the existence of preferable be-
haviors of a speaker (“praise estimation” in this study) and giv-
ing feedback on them would also encourage self-reflection and
further improvement of conversational skills. While previous
studies have proposed suggestion feedback systems [5, 7, 8],
they were rule-based and required high costs to build and ex-
tend. In this regard, this study tackles machine learning-based
praise estimation for utterances in conversational videos. In par-
ticular, we aim to estimate praises for a seller’s utterance in a
dyadic business negotiation conversation between a seller and a
buyer.

Praising is regarded as identifying the high conversational
skills observed in an utterance. The conversational skills are
related to multimodal information of the speaker [9–11]. The
listener’s behavior, such as facial expressions, may also suggest
the quality of the speaker’s utterance. To consider such informa-
tion, the model in this study estimates praises from three modal-
ities, the speaker’s speech, the speaker’s video, and the listener’s
video, for the duration of a target speaker’s utterance (Fig. 1).
Previous studies have also shown that considering synchronized
behavior across modalities (cross-modal synchronization), such
as speaking with/without gestures or smiling simultaneously,
is important to estimate skills from conversation data [10, 12].
This suggests that an important relationship for praise estima-
tion lies in synchronized time steps across the three modalities.

Previous studies have shown that Transformer can effec-
tively model multimodal information in various tasks, including
personality and skill estimation from conversation data [13–15].

We investigate a multimodal Transformer for praise estima-
tion, in particular, based on a time-axis concatenation architec-
ture [16]. This architecture concatenates multimodal features
along the time axis to form an input sequence to a Transformer
layer. The advantage is that an attention matrix in a Transformer
has the potential to flexibly model the inherent relevance be-
tween all time steps of all modalities. However, model training
can be difficult with a limited amount of training data. This
is because numerous relationships, i.e., combinations between
all time steps of all modalities, need to be modeled solely from
training data.

The key idea of the proposed method is to utilize prior
knowledge as well as data for training a multimodal Trans-
former. In particular, the proposed method constrains the at-
tention matrix to reflect the prior knowledge that there is a
meaningful relationship around synchronized time steps across
modalities. This idea is inspired by previous studies in speech
processing [17, 18] and language processing [19]. For voice
conversion [17] and text-to-speech [18], they introduced a loss
function that guides an attention matrix to be diagonal. This loss
function reflects the prior knowledge that temporal alignment
between inputs and outputs should be monotonic and nearly lin-
ear. For language modeling, Longformer [19] also constrains
the attention matrix so that several specific tokens have global
attention while others have local windowed ones. This con-
straint reflects prior knowledge about the tasks and input to-
kens. For a multimodal Transformer, the proposed method in-
troduces a loss function to guide the attention matrix to link
around the synchronized time steps across modalities. Our ex-
periments on praise estimation demonstrate that the proposed
method improves the performance of multimodal Transformers.

2. Related Works

In addition to time-axis concatenation, there are several major
architectures of a Transformer that can incorporate multimodal
inputs; late fusion [20], feature-axis concatenation [15, 21],
early summation [22,23], and cross-attention [24–26]. The late-
fusion model integrates multimodal information at the decision
level. It encodes each modality with a different Transformer
and cannot incorporate temporal relationships across modali-
ties. The feature-axis concatenation model concatenates multi-
modal features along the feature axis. Then, the concatenated
vectors are input to a Transformer layer. Similarly, the early
summation model adds multimodal features to construct an in-
put vector to a Transformer. These two models are less flexible
than the time-axis concatenation because all modalities share
common attention matrices. Cross-attention uses one modality
to estimate the relevance of each position in another modality.
It enables flexible modeling similar to time-axis concatenation.
For cross-attention, our approach to guide an attention matrix
to link around synchronized time steps across modalities has
yet to be investigated. While the proposed method is formu-
lated on the basis of the time-axis concatenation, our approach
can be similarly applied to cross-attention models.
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Figure 1: Schematic diagram of the praise estimation task and proposed method. “AP” and “FC” denote an attention pooling and
fully-connected layer, respectively.

3. Praise Estimation Method
3.1. Praise Estimation Task
Let X = {Xss,Xvs,Xvb} be a data stream of a seller’s
speech (ss), seller’s video (vs), and buyer’s video (vb) that cor-
respond to the time interval of a target seller’s utterance, re-
spectively. Let l = {l1, · · · , lK} be the praise tags correspond-
ing to the target seller’s utterance, where K is the number of
praise tags and lk ∈ {0, 1} denotes that the utterance is {“not
praised”, “praised”} regarding the k-th praise tag, respectively.
Figure 1 illustrates the eight praise tags used in this study. Since
multiple praise tags can correspond to an utterance, the praise
estimation is defined as the multi-label classification task, which
determines l from

l̂ = f(Xss,Xvs,Xvb; Θ), (1)

where l̂ is the predicted praise tags, f(·) is the classification
function determined by the model, and Θ is a parameter set of
the model.

3.2. Baseline Method
The baseline method is based on the time-axis concatenation
architecture. It first uses pre-trained encoders to extract features
of each modality Zss,Zvs,Zvb from X ,

Zss = SpeechEncoder(Xss; θs) (2)
Zvs = VideoEncoder(Xvs; θv) (3)
Zvb = VideoEncoder(Xvb; θv), (4)

where SpeechEncoder(·) and VideoEncoder(·) are a projec-
tion function from data to the feature vector for speech and
video, respectively. θs and θv are parameters of the encoders.
Zm ∈ RD×Tm is the feature vector of modal m ∈ {ss, vs, vb}
where D and Tm are the feature dimension and time length of
the feature of modality m, respectively. Note that the estima-
tion models in this study do not use textual information, such
as speech recognition results. However, several praise labels,
such as honorifics and ice-breakers, are related to textual infor-
mation. This model design is based on the study that showed
pre-trained speech encoders can implicitly capture textual in-
formation from audio data [27].

The feature vectors are then concatenated along the time
axis and fed to the Transformer layers. The n-th Transformer
encoder block comprises the n-th hidden representations S(n)

from the lower inputs S(n−1) as

S(0) = [Zss;Zvs;Zvb] (5)

S(n) = Transformer(S(n−1); θ
(n)
T ), (6)

where Transformer(·) is the Transformer encoder block [28]
in the pre-layer normalization architecture [29]. θ

(n)
T is the
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Figure 2: Illustration of proposed method. For simplicity, we
show the examples when Tss = Tvs = Tvb.

model parameter of the n-th Transformer layer. The hidden rep-
resentation is projected to the posterior probability of the praise
tags,

P (lk|X) = sigmoid(FC(AP(S(N); θAP); θ
(k)
FC)), (7)

where sigmoid(·), FC(·), AP(·) are a sigmoid, a fully-
connected, and an attention pooling layer, respectively. θAP and
θ
(k)
FC are model parameters of the attention pooling layer and a

fully-connected layer corresponding to the k-th label, respec-
tively.

The model parameters Θ =

{θs, θv, {θ(n)
T }n, θAP, {θ(k)FC}k} are optimized by minimizing

cross-entropy loss Llabel using training data D,

Llabel =
∑

{X,l}∈D

∑

k

− logP (lk|X; Θ). (8)

Note that speech and video encoders are pre-trained and frozen
during training.

3.3. Proposed Synchronization-Guided Multimodal Trans-
former (SGMT)
A Transformer layer mainly consists of a multi-head attention
layer and a position-wise feed-forward network. In each of
the multi-heads of each Transformer layer, the attention matrix
A represents the relevance within the input sequence. There-
fore, we introduce a constraint on A based on the prior knowl-
edge that there is a meaningful relationship around synchro-
nized time steps across modalities.

The attention matrix A is defined as a scaled dot product
of a query matrix Q and a key matrix K. Q and K are cal-
culated by multiplying weight matrices to a token of each time
step of the input sequence. Therefore, in the time-axis concate-
nation architecture, the query and key matrices consist of small
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Figure 3: Photo of participants engaged in negotiation task

matrices, each of which corresponds to a modality as follows,

Q = [Qss;Qvs;Qvb] (9)
K = [Kss;Kvs;Kvb], (10)

where Qm,Km ∈ Rd×Tm for each modality m and d denotes
the vector dimension of the queries and keys. The scaled dot
product of them comprises the following attention matrix con-
sisting of block matrices,

A = softmax

(
Q⊤K√

d

)
(11)

=

(
Ass,ss Ass,vs Ass,vb

Avs,ss Avs,vs Avs,vb

Avb,ss Avb,vs Avb,vb

)
, (12)

where softmax(·) is a softmax function. A block matrix
Am1,m2 ∈ RTm1

×Tm2 can be regarded as an attention from
a modality m1 to another m2.

Cross-modal attentions are represented by non-diagonal
block matrices, Am1,m2(m1 ̸= m2). Their diagonal com-
ponents correspond to synchronized time steps across modal-
ities (see Fig. 2a). Therefore, for each of Am1,m2 , the diag-
onal region should be dominant. We introduce the following
synchronization-guided loss to penalize Am1,m2 for not having
a diagonally dominant structure. First, we define the following
attention penalty matrix W ,

W =




0 W ss,vs W ss,vb

W vs,ss 0 W vs,vb

W vb,ss W vb,vs 0


 (13)

Wm1,m2
i,j = 1− exp

(
− (i/Tm1 − j/Tm2)

2

2σ2

)
, (14)

where Wm1,m2
i,j is (i, j)-th element of block matrix

Wm1,m2 ∈ RTm1
×Tm2 , which was formulated refer-

ring to the “diagonal attention loss” in previous works [17, 18].
σ is a hyperparameter. The matrix W has positive values
in non-diagonal regions in the non-diagonal (cross-modal)
blocks (see Fig. 2b). The synchronization-guided loss Lsg is
calculated as the sum of the losses for each of multi-heads
h ∈ {1, · · · , H} in each Transformer layers n ∈ {1, · · · , N},

Lsg =
1

HN

∑

h,n

1

T 2
||W ⊙Ah,n||1, (15)

where T = Tss + Tvs + Tvb is the total length of the input
sequence. The proposed model is trained to minimize the fol-
lowing loss function,

L = Llabel + λsgLsg, (16)

where λsg ≥ 0 is a regularization parameter, which weighs the
importance of Lsg relative to Llabel.

4. Dataset
For the experiments in this study, we used the online audio-
visual negotiation corpus constructed in a previous study [30].
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Figure 4: Frequency of an-
notation of each praise label
by annotators.

Table 1: Frequency of each
label k in the dataset (8469
utterances in total).

k #lk = 1 ratio (%)

1 2216 26.2
2 320 3.8
3 1170 13.8
4 1898 22.4
5 194 2.3
6 839 9.9
7 1892 22.3
8 1200 14.2

While the original corpus contained 48 dyadic business nego-
tiation conversations, we conducted additional recordings and
used 64 dialogues. The conversations concerned four products
(chat tools, insurance, TVs, and cell phones), and they negoti-
ated prices, delivery dates, quantities, services, etc. There were
two experienced salespeople for each of the four products, eight
in total. Four men and four women were sellers, and eight men
and eight women were buyers. Their ages were between 19 and
60. They gave their written informed consent before starting
the experiment. The datasets are not publicly available because
participants recruited in this study did not give their consent to
their raw data being publicly shared.

All participants were Japanese, and the recorded conversa-
tions were in Japanese. The corpus is composed of 1027 min-
utes of recordings (average duration: 16.04 minutes per con-
versation). Video and audio were recorded during the busi-
ness negotiation using a camera and microphone installed on
the client’s PC. The video was recorded at 25 fps with a 1280
× 720 resolution. Camera views were frontal and recorded the
upper part of the body (see Fig. 3). The audio was recorded
at 32 kHz. The recorded video and audio were synchronized.
Participants were instructed to use headphones.

The seller’s speech was segmented into inter-pausal units
(IPUs) [31] using a voice activity detection technique. To en-
sure sales expertise is reflected in the annotations, we hired ten
annotators with at least three years of sales supervisory expe-
rience. They watched the recorded conversational video and
assigned eight praise tags (Fig. 1) to each utterance by the seller
considering conversational contexts.

Figure 4 shows each annotator’s frequency of annotation of
each praise label. We can see a significant bias in the frequency
of label assignments depending on the annotator. On the ba-
sis of our informal data observation, we also judged that each
annotator assigned praise labels with some consistency of crite-
ria. These suggest that although the praise labels were assigned
using different criteria depending on the annotator, each assign-
ment had validity to a certain degree. In this regard, we defined
the ground-truth label as “praised” (i.e., lk = 1) for an utterance
when any of the ten annotators judged as such. We also defined
the ground-truth label as “not praised” (i.e., lk = 0) when all
annotators judged as such. Table 1 shows the frequency of each
label k in the dataset.

5. Experiments
5.1. Setup
To evaluate the effectiveness of the proposed method, we com-
pared the performance of the proposed method with four con-
ventional Transformer architectures.
• SPEECH: Unimodal Transformer using only seller’s speech

modality.
• LATE-FUSION: Transformer in the late-fusion architecture

that combines outputs from three unimodal Transformers.
• FEATURE-CONCAT: Transformer that concatenates multi-

modal input features along the feature axis.
• MT (Baseline): Multimodal Transformer in the time-axis
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concatenation architecture in Sec. 3.2.
• SGMT (Proposed): The proposed synchronization-guided

multimodal Transformer.
SPEECH used only the seller’s speech data for estimation. We
set S(0) = Zss in (5) in the baseline method. LATE-FUSION
models each modality with a different Transformer. In (7), the
output vectors from the AP(·) layer for the three modalities are
added and input to the FC(·) layer. FEATURE-CONCAT con-
catenates feature vectors of three modalities along the feature
axis. We set S(0) = [Z⊤

ss;Z
⊤
vs;Z

⊤
vb]

⊤ in (5). Since the frame
shift of video was longer than that of speech, we equalized the
time length of features among modalities before the concatena-
tion by repeating each frame of Zvs and Zvb.
Pre-processing: For the acoustic features, we extracted 80
log Mel-scale filterbank coefficients. The frameshift was 10
ms. For the visual features, we detected face regions in each
input frame with YOLOv3 [32] trained on the Wider Face
dataset [33]. The face images were cropped, resized to 128 ×
128, and downsampled to 2.5 fps.

Encoder configurations: For the speech encoder, acoustic
features were passed through two convolution and max pool-
ing layers with a stride of 2, so we downsampled them to 1/4
along with the time axis. We stacked six Transformer encoder
blocks. All components in the speech encoder were pre-trained
with end-to-end automatic speech recognition tasks using over
10K hours of speech. For the video encoder, the CNN function
was composed on the basis of MobileNetV3 [34]. After that, we
stacked two Transformer encoder blocks. For each Transformer
block, we set the dimensions of the outputs to 128, the dimen-
sions of the inner outputs in the position-wise feed-forward net-
works to 512, and the number of heads in the multi-head atten-
tion to 4. We used the Swish activation for the position-wise
feed-forward networks. We pre-trained the CNN component
in the video encoder through two steps. It is pre-trained with
a face recognition task using VGGFace2 [35] in the first step,
and a still-image-based facial expression recognition task us-
ing FER [36], RAF-DB [37], and AffectNet [38] datasets in the
second step.

Multimodal Transformer configurations: For multimodal
Transformers, we set the dimensions of the outputs and the in-
ner outputs in the position-wise feed-forward network to 512.
We set the number of heads in the multi-head attention to 4. We
used the Swish activation function. We used a single Trans-
former layer (i.e., N = 1). We set the mini-batch size to
4 and the dropout rate in the Transformer blocks to 0.1. We
used Adam [39] for optimization. We stopped the training
steps based on early stopping utilizing the validation set. For
the proposed model, we set the hyperparameters σ = 0.2 and
λSG = 4500. These values were experimentally selected from
σ ∈ {0.1, 0.2, 0.3, 0.7} and λSG ∈ {45, 450, 4500}.

Evaluation: We excluded utterances when the face region de-
tection failed for either speaker. This resulted in 8469 utterances
for training and testing in the experiments. We used an 8-fold
cross-validation method for training and testing so that the test
set does not include any participants in the training set. We eval-
uated the overall performance by macro F1. We also confirmed
the trend in Precision and Recall averaged over eight labels. To
eliminate the effect of randomness in model training, we re-
peated the evaluation five times to calculate an average score
for each experimental condition.

5.2. Results
Table 2 shows the evaluation results. We observe that the
macro F1 of the proposed method was higher than that in
the other conventional methods by 0.021. This demonstrated
the effectiveness of the proposed method. When we compare
the macro F1 of the four conventional methods, we observe
that LATE-FUSION was better than SPEECH. We also ob-
served that FEATURE-CONCAT and MT were even worse

Table 2: Evaluation results of the praise estimation experiments
averaged over the eight praise labels.

Precision Recall macro F1

SPEECH .430 .170 .237
LATE-FUSION .450 .181 .245
FEATURE-CONCAT .391 .123 .174
MT (Baseline) .502 .157 .228
SGMT (Proposed) .465 .190 .266

than SPEECH. These demonstrate that the baseline methods
that concatenate multimodal features had difficulty estimating
when utilizing multimodal information. The proposed method
made the model training efficient, which led to the effective uti-
lization of multimodal information.

We also see that Precision was higher than Recall in all
conditions. Since the “praised” tags were fewer than the “not
praised” tags as shown in Tab. 1, obtaining a high Recall in
the experiments was difficult. We also observe that improve-
ment by the proposed method was clear in Recall rather than
Precision. The proposed method can consider multimodal in-
formation, including cross-modal synchronization in an utter-
ance. Therefore, it can assign praise tags to a wider variety of
utterances than the baseline method. This is why the proposed
method could improve Recall and macro F1.

6. Discussion
We investigated praise estimation, the task of estimating the ex-
istence of preferable behaviors of a speaker in a conversational
video. We proposed introducing a loss function representing
the prior knowledge that the attention should link around the
synchronized time steps across the input modalities. Our exper-
iments on a business negotiation conversation corpus showed
that the proposed method could improve the praise estimation’s
macro F1 by 0.021.

We investigated utterance-level praise estimation rather
than session-level. This design was based on the expectation
that users would be more self-reflective and motivated if they
could recognize the specific target utterance of each praise by
the system. The agreement value of the utterance-level praise
tags between annotators was low, which can degrade the esti-
mation accuracy and reproducibility of the experiments. This
was in contrast to a previous study that showed a sufficient
agreement value when they annotated communication skills at
sub-session level (5 to 7 minutes) [40]. This is because differ-
ences in judgment criteria among annotators significantly im-
pact the results, especially when the annotation target is short
and its information is scarce. In other words, there is a trade-
off between the time resolution of estimation and validity of the
ground truth. Future work includes an optimal design of praise
estimation considering the trade-off.

There was a limit to Recall in the experiments. A possi-
ble reason for this was the label imbalance of the praise tags.
Considering label imbalance by objective function [41] can im-
prove Recall. Another possible reason was the need for more
information considered by the model. The annotators may as-
sign praise tags considering the conversational context, includ-
ing the buyer’s speech, as well as the seller’s speech, and the
seller’s and buyer’s videos. Another future work considers con-
versational context [42] by the proposed model.

We evaluated the proposed method for the praise estima-
tion task using a private dataset. The proposed method can also
be effective in other tasks where cross-modal synchronization
is important, such as multimodal emotion recognition and per-
sonality estimation from conversational videos. Future work
includes evaluating the proposed method for such tasks using
publicly available datasets.
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