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Abstract
In this work, we devise a parameter-efficient solution to

bring differential privacy (DP) guarantees into adaptation of a
cross-lingual speech classifier. We investigate a new frozen pre-
trained adaptation framework for DP-preserving speech model-
ing without full model fine-tuning. First, we introduce a noisy
teacher-student ensemble into a conventional adaptation scheme
leveraging a frozen pre-trained acoustic model and attain su-
perior performance than DP-based stochastic gradient descent
(DPSGD). Next, we insert residual adapters (RA) between lay-
ers of the frozen pre-trained acoustic model. The RAs reduce
training cost and time significantly with a negligible perfor-
mance drop. Evaluated on the open-access Multilingual Spo-
ken Words (MLSW) dataset, our solution reduces the number
of trainable parameters by 97.5% using the RAs with only a 4%
performance drop with respect to fine-tuning the cross-lingual
speech classifier while preserving DP guarantees.
Index Terms: speech classification, differential privacy, do-
main adaptation, parameter efficient tuning

1. Introduction
With the rapid growth of the computation ability and commer-
cial datasets, more and more personal data are collected, which
poses the issue of protecting sensitive data. The United States
Census Bureau, for instance, announced a new security stan-
dard [1] based on Differential Privacy (DP) [2]. The (ϵ, δ)-DP
mechanism allows us to measure the security of algorithms and
provides a guarantee based on a privacy budget. However, en-
suring differential privacy degrades the system’s performance
[3] because it restricts access to the data. In addition, training a
large model with DP is not only time-consuming but also leads
to a more severe drop in performance. [3].

Nonetheless, there are many benefits associated with the
use of large-scale datasets and large models. For example,
large-scale datasets are fundamental to deploying well-trained
deep neural networks (DNNs) [4, 5]; moreover, if the size of
the DNN is large enough, it can reach the global minima from
any initialization with the gradient descent algorithm [6]. Al-
though the global optimality was only proven in tensor factor-
ization, [6] shows the benefits associated with large connection-
ist models. Indeed, there exist several large pre-trained mod-
els that have been proven vital for different downstream tasks
[7, 8, 9, 10, 11, 12, 13, 14] after fine-tuning - in this work, we
will use the term fine-tuning and adaptation interchangeably.

Unfortunately, fine-tuning a pre-trained larger model, in ad-
dition to being a time-intensive procedure, can also distort the
pre-trained features and underperform out-of-distribution [15].
Training large models with differential privacy is even harder
because DP-related perturbations are introduced into the train-

ing process. Therefore, a feasible solution to estimate and ex-
ploit a representation of a large pre-trained model is becoming
a pressing issue to be tackled.

This work aims at investigating the benefits of leveraging
model adaptation and parameter efficient techniques in the con-
text of differential privacy. In particular, we propose a cross-
domain differential private fine-tuning framework 1 leveraging
a deep frozen model pre-trained on public source data, and pri-
vate target data. We consider the case when there is a domain
mismatch between source and target domains. In the proposed
framework the frozen pre-trained model doesn’t guarantee pri-
vacy but provides information from non-sensitive source data.
We also use additional parameters (weights) to serve as a do-
main adaptor, which provides information from the target data
and introduces DP guarantees. In particular, DP stochastic gra-
dient descent (DPSGD) [16, 17, 18], and Private Aggregation
of Teacher Ensembles (PATE) [19, 20] are used to attain DP
guarantees.

For DPSGD, we follow what was proposed by Da et al. in
[21]. Since the experimental evidence demonstrated poor re-
sults with DPSGD, we devised a PATE-based solution, which
led to a substantial performance improvement. Figure 1 shows
the proposed PATE-based solution to perform model adapta-
tion (fine-tuning) while attaining DP-privacy guarantees. The
additional weights shown in the figure are trained on different
disjoint chunks of the sensitive data. Those weights are then
inserted into the frozen pre-trained large models using the solu-
tions discussed in [21]. The obtained frozen pre-trained model
is aggregated with different weights together based on PATE’s
algorithm. Finally, the student model queries from the aggre-
gated teacher model using non-sensitive target domain data and
learns only from non-sensitive data to preserve privacy. To
the best of the authors’ knowledge, our work is the first to
propose cross-domain DP-based acoustic modeling adaptation.
The overall solution does not only guarantee DP, but it also is
parameter efficient.

2. Related Works
2.1. Differential Privacy in a Nutshell

The DP mechanism [2] is established to evaluate the security
of an algorithm. DP is parameterized by the privacy budget
variable ϵ, and δ defined as follows:

Definition 1 An algorithm A is said to be (ϵ, δ)-DP if for
all adjacent datasets D and D′, and for any possible event S,
the algorithm satisfies:

Pr[A(D) ∈ S] ≤ eϵPr[A(D′) ∈ S] + δ (1)

1GitHub Link: https://github.com/Chun-wei-Ho/
Private-Speech-Adapter.
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Figure 1: Proposed private aggregation of teacher ensem-
bles [19] (PATE)-based adapter for parameter efficient fine-
tuning on acoustic and speech processing.

The above equation, in some sense, guarantees that the out-
comes of the algorithm with D and D′ are indistinguishable.

There are several methods to achieve (ϵ, δ)-DP, and most
of them require some DP-oriented perturbation. The perturba-
tion guarantees (ϵ, δ)-DP by making the output of the algorithm,
A(D) and A(D′), indistinguishable. The simplest method to
guarantee DP is to introduce the Laplace perturbation to the
output of A. It has been shown that we can achieve pure DP
(δ = 0) with Laplace perturbation added [22].

Although there exist several ways to estimate the privacy
budget ϵ, one of the most convenient methods is Renyi Differen-
tial Privacy (RDP) [23], which is based on the Renyi Divergence
by (2), which is similar to the Kullback-Leibler Divergence:

Divα(P∥Q) =
1

α− 1
EX∼Q log

(
P (x)

Q(x)

)α

(2)

The RDP is defined as follows:
Definition 2 An algorithm A is said to be α, ϵ-RDP if for

all adjacent datasets D and D′, the algorithm satisfies:

Divα(f(D)∥f(D′)) ≤ ϵ (3)

It has been proven in [23] that if any algorithm satisfies α, ϵ-
RDP, it’s also an

(
ϵ+ log(1/δ)

α−1
, δ
)

-DP algorithm. We use RDP
to evaluate DP in this study.

2.2. Privacy Preserving in Machine Learning

A common method to preserve privacy is by DP-based pertur-
bations. However, perturbations also degrade the system’s per-
formance. Finding a trade-off between performance and pri-
vacy has become an important topic worth investigating. Two
popular algorithms have been designed to preserve privacy in
machine learning. The first is DP stochastic gradient descent
(DPSGD) [16, 17, 18], in which the effect of single data is re-
stricted by per-utterance gradient clipping, and the noises are
added to satisfy a certain privacy budget ϵ. The second method
is PATE [19], which is based on three stages: First, several
teacher models are trained on disjoint chunks of sensitive data.
Then, the outputs of the teacher models Ti(x, θi) are aggre-
gated using a private aggregation algorithm (4). Finally, the
student model is trained on some public data and the output of
the teacher models, defined as T (x, θ) in (4), where Lap(λ) de-
notes the Laplace perturbation parameterized by λ. PATE mod-
els achieve (ϵ, δ)-DP by introducing noises in the aggregation
phase and by hiding sensitive data from the student model. The
amount of noise is determined by the “smooth sensitivity” [24]
of the teacher models, which is also called data-dependent pri-
vacy. By reducing the required DP-oriented perturbation while

aggregating, PATE has been tested as the state-of-the-art results
in different applications, e.g., [25, 26].

T (x, θ) = argmax
{(∑

Ti(x, θi)
)
+ Lapi.i.d(λ)

}
(4)

2.3. Parameter Efficiency & Differential Privacy

Training a huge deep model taking into account DP require-
ments can be troublesome because we have to restrict the in-
formation extracted from the data. Furthermore, the pertur-
bation introduces randomness into the learning phase. The
amount of perturbation required under the same privacy bud-
get is depended on the model size. The larger the model is, the
more perturbation we need to preserve privacy. For example,
the perturbation added to the gradients is proportional to the
square root of the number of trainable parameters in DPSGD.
That in turn leads to a trade-off between the model capacity,
and DP guarantees. In many DP setups [19, 27], smaller and
simpler model architectures end up providing superior perfor-
mance. Nonetheless, Da et al. [21] proposed to use parameter
efficient methods to deal with the noise injection while training
large models with DPSGD. In their study, it has been exper-
imentally proven that larger models with parameter efficiency
lead to better results when used in combination with DPSGD.
We posit that parameter efficiency serves as a conduit between
large models and privacy budgets. To this end, we investigate a
first attempt to advance parameter-efficient learning with PATE,
which has been demonstrated to have wide-ranging applications
for performance-driven tasks.

2.4. Parameter Efficient Algorithms

In this study, we mainly focus on two parameter efficient algo-
rithms. Linear Probing (LP) [15] prevents distortions by freez-
ing the entire encoder while training the linear head2 only. By
reusing the pre-trained weights completely, Linear Probing is
effective when the source domain and the target domain are sim-
ilar to each other.

Adapters [28] modifies the feature extractors by inserting
some adapting layers without changing the pre-trained weights.
More specifically, the relationship between the output of the ith

layers F̂ i
θ(x) and the output of the (i−1)th layers F̂ i−1

θ (x) are
described in (5), where Θ denotes non-trainable parameters, and
θ denotes trainable parameters. Aθ denotes some non-linear
function parameterized by θ. The hat notation, ·̂, indicates the
functions whose inputs are the model input, x, instead of the
output of the previous layer.

θ∗ = argmin
θ

{
Lerror(σ(F̂N

θ (x)), ŷ)
}

where





Âi
θ(x) = Ai

θ(F̂ i−1
θ (x))

F̂ i
θ(x) = F i

Θ(F̂ i−1
θ (x))︸ ︷︷ ︸

original encoder (frozen)

+ Âi
θ(x)︸ ︷︷ ︸

Adapter output

(5)

DNN Residule Adapter (RADNN) [29], a common adapter
uses a simple up-projector and a simple down-projector along
with a residual path to define the non-linear function Aθ , which
modifies the input feature, F̂ i−1

θ (x), by a limited matrix rank.
It has been experimentally proven that RADNN can attain com-
parable performance results to those obtained through a fine-
tuning of the whole model parameters but using only up to 2 %
of parameters [30].

2The last linear layer is referred to as “head”
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3. Proposed DP based Parameter Efficient
Adaptation for Acoustic Modeling

In this study, two of the most popular privacy-preserving algo-
rithms, DPSGD and PATE were investigated. For DPSGD, we
used the same setup in [21], where only the RADNNs are updated
during training. Figure 1 shows instead the proposed PATE-
based solution, where N different additional weights are trained
on the different disjoint chunks from the sensitive dataset. The
weights are then inserted into the global teacher model and
are aggregated together using the private aggregation algorithm
proposed in [19]. The student model, on the other hand, learns
from the public data queried from the private teacher models.
Therefore, the student can learn from private data without direct
access to it. As explained in Section 2.2, the amount of required
DP-oriented perturbation is determined by the sensitivity of the
teacher models. Therefore, by applying data-dependant privacy
and domain adaptation, we were able to successfully reduce the
amount of DP-oriented perturbation required to preserve pri-
vacy.

3.1. DNN Residual Adapters Connection

As discussed in Section 2.4, RADNN is one of the common
parameter-efficient adapters. In this study, we also investigated
different non-linear functions, Âθ(x). Inspired by [31, 32], we
try to connect the RADNNs using some skip connections. Instead
of just performing neighboring connections, we tried to connect
the RADNNs in three different ways and investigate their effects.
The three connection ways are summarized in (6). The connec-
tions are inspired by Unet [33] and DenseNet [34].

Neighboring: Âi
θ(x) = Ai

θ(F̂ i−1
θ (x) + Âi−1

θ (x))

Unet-alike [33]: Âi
θ(x) = Ai

θ(F̂ i−1
θ (x) + ÂN−i

θ (x)) ∀i > N

2

DenseNet-alike [34]: Âi
θ(x) = Ai

θ(F̂ i−1
θ (x) +

i−1∑

k=1

Âk
θ(x))

(6)
As defined in (6), the neighboring connections connect the

output of the previous layer. In the Unet-alike connection, the
last i layers are connected to the first i layers. And in the
DenseNet-alike connection, every layer is connected to every
preceding layer.

3.2. Evaluation of Utility

We leveraged Eric Hulburd’s work [35] to assess the quality of
the proposed approach and used the utility defined in (7) that
takes both parameter efficiency and performance:

Utility =
Accuracy − 50

log(Number of trainable parameters)
(7)

4. Experiments & Results
4.1. Experimental Setup

We assessed our framework on a keyword classification task.
Specifically, we used the English Google Speech Command V2
(EGSP-V2) [36] as source domain, and the Multilingual Spoken
Words [37] as the target domain. We took into account only four
languages, namely English, German, French, and Russian, and
generated smaller subsets from them, referred to as MLSW-mini

Table 1: MLSW-mini dataset. ”# Words” indicates the number
of unique words in the language. The sample rate of the wave-
forms is 16 kHz. Each waveform is roughly 1 second long.

Language # Words # Samples/word Total Train Audio Time

en (Germanic) 18 4501-4927 23 hours 34 mins
de (Germanic) 15 4011-4910 18 hours 14 mins
fr (Romance) 13 4081-4988 16 hours 01 mins
ru (Slavic) 23 1002-4758 11 hours 00 mins

3, to simulate low-resource conditions. MLSW-mini configura-
tion is shown in Table 1. And the EGSP-V2 was used to pre-
train the deep classifier. Then, we adapted the model to MLSW-
mini with DP. For DPSGD, we used MLSW-mini-train and half
of MLSW-mini-test to train the model. For PATE, we trained the
teacher models on MLSW-mini-train. Then we trained the stu-
dent model on half of the MLSW-mini-test. The remaining data
in MLSW-mini-test was used for evaluation. The proposed setup
follows the standard PATE setup [19]. The privacy budget ϵ is
8.0 4 for French, German, and English, and 11.6 for Russian.

The deep architecture used as a pre-trained model is the
Keyword Transformer (KWT) [38]. KWT first performs a time-
distributed linear project of the mel-spectrogram; it then con-
catenates the features with token embeddings. Next, the con-
catenated features are fed into 12 layers of transformer blocks
with dimension 192 and classified using a linear head. The se-
tups are similar to [38] with the only difference being that 12
trainable RADNNs (with different dimensions) were inserted be-
tween the transformer blocks in the fine-tuning phase.

The Mel-spectrogram generated with a 30 ms analysis win-
dow, a 10 ms frame shift, and 40-points DFT is the input feature
used in both pre-training, and fine-tuning. For optimization, we
used AdamW except for DPSGD. The number of epochs was
set to 200. All the other setups are the same as those in [38].

4.2. Cross-lingual Adaptation Results

In this section, we investigate the effect of domain adaption
with cross-lingual data and compare the two introduced DP al-
gorithms, DPSGD and PATE, with and without RADNNs.

In Table 2, the baseline method, i.e., adapting the whole
KWT network parameters without DP guarantees, attains a clas-
sification accuracy equal to 96.49 with a utility of 3.0 on the
France language. By comparing the results with or without DP
in Table 2, we can see that both utility and accuracy drop when
DP constraints are imposed. In particular, the accuracy drops
from 96.49 to 53.40 when DPSGD, the fourth row, is used, and
the utility drops from 3.0 to 0.22. PATE, in the fifth row, instead
can limit the drop in accuracy and utility.

Furthermore, by comparing the results of training from
scratch (fs) and fine-tuning (FT), we conclude that domain
adaptation is required to successfully train a model with DP. But
differ from what was reported on language modeling in [21],
DPSGD is not effective in cross-lingual acoustic adaptation but
PATE is. We argue the difference is mainly because the domain
mismatch is larger in cross-lingual tasks, and the mechanism
of data dependant privacy in PATE reduces the amount of per-
turbation needed to be added under the same level of privacy
budget. We also evaluate all the selected languages listed in Ta-
ble 1, reporting an overall average results in the last two rows in

3The list of train/test split is reported on GitHub.
4We follow a common privacy budget (ϵ=8) based on [21] and Ap-

ple’s official document in https://www.apple.com/privacy/
docs/Differential_Privacy_Overview.pdf
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Table 2: Comparison between DPSGD and PATE with and
without RADNNs on MLSW-mini. The All language results are
the weighted average accuracy based on the number of utter-
ances in the four selected languages.

lang Method DP # Train Para. Utility Acc. (%)

fr from Scratch (fS) ✗ 5.4 M (100 %) 2.88 94.58
fS w/ PATE ✓ 5.4 M (100 %) 2.66 91.23

en → fr Fine-tune (FT) ✗ 5.4 M (100 %) 3.00 96.49
FT w/ DPSGD ✓ 5.4 M (100 %) 0.22 53.40
FT w/ PATE ✓ 5.4 M (100 %) 2.72 92.10
LP w/ PATE ✓ 21.7 K (0.4 %) 1.13 61.13
RADNN w/ DPSGD ✓ 0.9 M (14.6 %) 0.77 60.69
RADNN w/ PATE ✓ 0.9 M (14.6 %) 3.05 91.82

all fS ✗ 5.4 M (100 %) 2.71 92.03
fS w/ PATE ✓ 5.4 M (100 %) 2.32 85.97

en → all FT ✗ 5.4 M (100 %) 2.99 96.38
FT w/ PATE ✓ 5.4 M (100 %) 2.49 88.51
RADNN w/ PATE ✓ 0.9 M (17 %) 2.75 87.72

Table 3: Results with RADNN for PATE with different RADNN di-
mension and a privacy budget ϵ = 7.96 on MLSW-mini French.
RADNN-d means the down-projection dimension is d.

Method DP # Train Para. Utility Acc. (%)

FT ✗ 5.4 M (100%) 3.00 96.49
FT w/ PATE ✓ 5.4 M (100%) 2.72 92.10
LP ✓ 21.7 K (0.4%) 1.13 61.13
RADNN-24 ✓ 0.1 M (2.5%) 3.22 88.08
RADNN-288 ✓ 1.4 M (20.2%) 2.98 92.07

Table 2. The results indicate that our method works not only on
French but also in multi-lingual scenario.

4.3. Residual Adapter Size Effect on Fine-tuning

In this section, the effects of RADNNs are discussed. The MLSW-
mini French in Table 1 is used for our experiment. We per-
formed the experiments with a privacy budget ϵ = 7.96 using a
PATE [19] based KWT [38] model. We also used use RADNN-d

to denote that the down-projection dimension of the RADNNs is
d. We tried several d values ranging from 3 to 288, where 288 is
twice the dimension of the original feature dimension, and 3 is
instead 64 times smaller than the original feature dimension. As
summarized in Table 3, RADNN-24 attains the best utility, with an
88.08 % accuracy training 2.46 % of parameters only. In addi-
tion, by appropriately choosing the size of RADNNs, RADNN-288

provides a result that is comparable with that of the fully fine-
tuned model.

The effect of trainable parameters is also investigated in
Figure 2. First of all, as the number of trainable parameters
increases, the model accuracy increases. However, it saturates
at the fine-tuned accuracy when the number of parameters ex-
ceeds 20% of the total model parameters. The latter means that
we only have to train 20% of the parameters to reach the best
performance, and increasing the number of trainable parameters
does not help. In addition, the best utility occurs when adapting
2.46% of parameters. Reducing it does not lead to any benefi-
cial effect, and the accuracy begins to degrade rapidly. Increas-
ing the RADNN size improves the overall accuracy, but the utility
drops because the number of trainable parameters increases ac-
cordingly.

4.4. Different Connections of Residual Adapters

We now investigate into the different RADNN connections de-
scribed in Section 3.1. As shown in Table 4, connecting the
RADNNs in our task isn’t necessarily helpful. We believe the rea-

(a) Accuracy (b) Utility

Figure 2: Accuracy and utility of PATE-RADNN architecture with
different RADNN sizes. (a) The model performance converges to
the fine-tuning result when 20 % of the parameters are adapted.
(b) Our method achieves the best utility when 2.46 % of param-
eters are adapted.

Table 4: Experiments of PATE with different connections from
EGSP-V2 to MLSW-mini French with ϵ = 8.0.

Model structure Connection type Acc. (%)

RADNN-24 No connection 88.08
Neighboring [31] 86.91
Unet-alike 87.61
DenseNet-alike 86.72

RADNN-288 No connection 92.07
Neighboring [31] 91.49
Unet-alike 91.77
DenseNet-alike 91.13

son is that the additional information from the other RADNNs is
too noisy for a few-shot domain adaptation. We can validate the
hypothesis from the fact that the DenseNet-alike connections
provide the worst performance albeit it’s more complicated than
the other structures. And the results, same as our other experi-
ments, lead to a conclusion that the simpler, the more promis-
ing.

5. Conclusion
In this work, we tackled the problem of preserving privacy in a
cross-lingual speech classification task. First, we tried to port
what done on language modeling by [21] using DPSGD, but
we observed a significant performance drop using their method.
Thus, we proposed a novel PATE-based solution, which, differ-
ently from DPSGD, led to a small drop in performance while
still preserving DP guarantees.

Furthermore, to reduce the computational burden while
fine-tuning with DP, we tested LP and RADNN. LP was not ef-
fective; whereas, RADNN allows a reduction of 97.5% of the
parameters to be adapted while keeping a comparable perfor-
mance of the PATE model. We also performed an ablation study
to verify skip connection strategies on RADNN. Although skip-
connection does not give any performance improvement, the ex-
ploring of different parameter-efficient architectures leveraging
PATE is useful for future studies.
Acknowledgments The authors would like to express their
gratitude to Prof. Chin-Hui Lee from Georgia Tech for pro-
viding helpful insights and suggestions.
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