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Abstract
Non-verbal voice expressions (NVVEs) have been adopted

as a means of human-computer interaction in research stud-
ies. However, exploring non-verbal voice-based interactions
has been constrained by the limited availability of suitable train-
ing data and computational methods for classifying such ex-
pressions, leading to a focus on simple binary inputs. We ad-
dress this issue with a new dataset containing 950 audio sam-
ples comprising 6 classes of voice expressions. The data were
collected from 42 speakers who donated voice recordings. The
classifier was trained on the data using features derived from
mel-spectrograms. Furthermore, we studied the effectiveness
of data augmentation and improved over the baseline model ac-
curacy significantly with a test accuracy of 96.6% in a 5-fold
cross-validation. We have made CNVVE publicly accessible in
the hope that it will serve as a benchmark for future research.
Index Terms: non-verbal voice recognition, human-computer
interaction, speech impairment, dysarthric speech

1. Introduction
Inclusive speech technologies are gaining increasing attention,
particularly in the context of enabling individuals with speech
disabilities to communicate effectively and interact with speech
recognition systems. A current area of active research is the
recognition of dysarthric speech, as evidenced by studies such
as [1] and [2]. However, there is an inverse relationship between
the degree of impairment and the accuracy of speech recogni-
tion, which means that modern automatic speech recognition
(ASR) systems are not always a feasible solution for people
with severe speech impairments. Therefore, finding alternative
ways to facilitate communication for such individuals is of great
importance.

Interacting via non-verbal or non-lexical voice expressions,
such as humming, can be particularly beneficial for people with
severe disabilities who may also suffer from speech disorders.
Over 96% of people with speech disorders can produce some
form of non-speech voice [3]. These individuals may have dif-
ficulty in communicating with common language, and may not
be able to use conventional voice commands. Moreover, non-
verbal voice interactions put less strain on the vocal cords, as
they often involve quieter, more subtle movements and less ef-
fort from the user, making it a good option for people who are
recovering from a speech-related injury. Non-verbal voice in-
teractions can provide an alternative way for these individuals
to express themselves and communicate their needs or prefer-
ences. For example, humming could be used to control devices
or functions, such as turning on a light or activating a motorized
wheelchair [4]. Overall, the use of non-verbal voice interac-
tions can greatly improve the accessibility and usability of tech-

nology for people with disabilities and can help to break down
barriers to communication and expression.

In this work, we introduce and describe a dataset of Non-
Verbal Voice Expressions (NVVEs) recorded from healthy in-
dividuals and dysarthric speakers. This work aims at providing
a novel resource for future developments of non-verbal voice
recognition to be used in computer interactions and assistive
technologies. We believe such a dataset is an essential ba-
sis for developing a feasible classification model. The final
dataset, code for creating a voice recognition system, trained
models, and other voice processing tools used in our work are
publicly available at https://github.com/hedeshy/
CNVVE. We hope the availability of these resources will enable
new assistive technology projects that better serve the needs of
the community.

2. Related work
In order to understand the use of NVVEs input for computer in-
teractions, we investigated their proposed recognition methods
and application.

Hawley et al. [6] collected voice samples from people
with severe dysarthria to create an environmental control sys-
tem based on hidden Markov models (HMMs). Bilmes et al.
[7] also uses HMMs for pattern recognition on three continuous
vocal characteristics energy, pitch, and vowel quality to create a
vocal joystick for people with speech impairments. Compared
to models based on convolutional neural networks (CNNs), us-
ing conventional HMMs is disadvantaged due to their assump-
tions of linearity, difficult scalability, and less robustness to
noise.

Some related works aim at detecting vocal segregates
(fillers like ‘um’ and ‘uh’, pauses, and other hesitation phenom-
ena) to address disfluencies in speaking [8, 9]. They suggest
machine learning models to automatically detect and remove
‘um’, ‘uh’, breaths, laughter, and word repetitions. Other forms
of human non-speech voice samples such as sneezing, breath-
ing, and coughing are listed in the ESC dataset Piczak [10].
However, these works have been developed with different ob-
jectives and are not suitable for immediate interactions.

Various studies have investigated the potential of NVVEs
as a means of providing accessible input mechanisms [11, 7,
12]. Non-verbal voice expressions can be detected and when
detected undergo binary classification. In this way, they can be
used as on/off signals, comparable to a button [13]. Continuous
non-verbal voice expressions, such as humming, can be used for
a slider [11], or in combination with eye-tracking for hands-free
text entry [5]. Additionally, NVVE can serve as an alternative
input modality for wheelchair control [4]. Furthermore, it has
shown potential in controlling games [14, 15] and even artistic
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Table 1: Examples of NVVEs and their usage.

Sound Usage HCI usage example

“Uh-huh” or “mm-hmm” Confirmation, affirmation Item selection [5] & interaction with Yes/No-prompts
“Uh-uh” or “mm-mm” Disagreement, negation Correction & interaction with prompts
“Hush” or “Shh” Request for quiet Silent a smartphone
“Psst” Attention-getting Wake up a device or a specific app
“Ahem” Attention-getting, Wake up a device or a specific app &

disapproval or embarrassment disapproval
Continuous humming, ”hmmm” Indication of thinking Temporal interactions, e.g., Wheelchair control [4]

or considering something

expression [16]. Table 1 provides examples of NVVEs and their
potential usage in human-computer interaction (HCI).

3. Collecting non-verbal voice expressions
After surveying previous research in HCI, we compiled a list of
NVVEs that can be leveraged for computer interaction. While
some NVVEs have been reported in scientific publications in
the field of HCI, there are others that have not yet been docu-
mented but could still be used for discrete and continuous in-
puts, listed in Table 1. We recorded these voice expressions as
well to facilitate the creation of assistive interactive technolo-
gies in the future.

3.1. Procedure

We have developed a dedicated website for data collection that
defines the purpose and type of voice data we seek to collect
by providing example recordings to participants as well as the
expressions’ written equivalent, e.g., “Uh-huh”. The website
presents the list of NVVE (Table 1) and a recorder to users so
that they can record their voice samples. They have the op-
portunity to supplement the recording with additional informa-
tion such as their gender, age, and the ambient environment
and noise level at the time of recording. The website is de-
signed for accessibility via smartphone, allowing participants to
record their voices using their own devices. Recording through
a smartphone microphone accurately captures real-life audio
and minimizes the mismatch between the experiment and ac-
tual conditions caused by different recording equipment. After
recording, participants are provided with their recorded sam-
ples, allowing them to re-record if they are not satisfied with the
initial recording. Audio recordings were automatically saved in
the .wav format and kept anonymous, with a sampling rate of
48 kHz and a bit depth of 32 bits.

3.2. Participants

We received recordings from 42 (19 females, 23 males, with
an estimated average age of 29.6, SD = 7.84) participants who
anonymously and voluntarily donated their voices. Four of
them reported having dysarthria. However, it did not hinder
them from performing the non-verbal voice expressions and
participating in the data collection program.

Participants provided their informed consent by accepting
the data collection terms before undergoing the experimental
procedures. The protocol was designed according to the data
protection declaration and approved by the local ethical com-
mittee of the university.

3.3. Dataset

We recorded the aforementioned NVVEs from a total of 42
speakers, each of whom performed from 1 to 5 recording ses-
sions. The dataset contains 950 voice data samples in total,
around 150 files in each NVVEs class. The dataset is accom-
panied by a metadata file that lists the filename, location, label,
and, when provided by speakers, their gender and age informa-
tion. We reviewed and removed any corrupted recorded files.

4. Method for classifying NVVEs
In order to achieve better results for the task of classifying
NVVEs, we introduce a model inspired by existing CNN-based
audio processing techniques [17, 18]. An overview of our
method is shown in Figure 1.

4.1. Data pre-processing and normalization

We first applied the Google WebRTC voice activity detection
(VAD) algorithm [19] on the given audio files to remove noise
or silence from the collected voice signals. Next, we performed
downsampling of the given signals to 16,000 Hz. A sample rate
of 16,000 Hz is commonly used for speech and voice recogni-
tion tasks, as it provides a good balance between accuracy and
computational efficiency [20, 21]. This is because human voice,
including plosive and sibilant fricatives, is typically in the range
of 100 Hz to 8,000 Hz, such that 16,000 Hz provides enough
samples to capture the majority of speech sounds.

To produce uniform mel-spectograms later on, the audio
signal lengths must be normalized. If the sample is shorter than
1 second, it is padded with zeros. The 1-second length was se-
lected as the majority of samples are typically shorter, averaging
0.82 seconds.

4.2. Feature extraction

Mel-frequency cepstral coefficients (MFCCs) and mel-
spectrograms are common inputs for audio signal processing
tasks such as environmental sound identification, speech
recognition, and music genre classification. In recent studies,
using mel-spectrograms features has shown state-of-the-art
performance [22, 23, 8, 2].

We transform the pre-processed waveforms to mel-
spectrograms. The reason for the chosen audio representation
will be further explained in Section 5.2.1. The mel-spectrogram
has a size of 96 × 63, where 96 represents the number of mel
frequency bands and 63 represents the number of time frames.
The time frames correspond to a duration of approximately 1
second, since a window size of 512 samples and a hop size of
256 samples were used to generate the spectrogram.
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Figure 1: A block diagram depicting an overview of the system
used for non-verbal voice expression classification.

4.3. A model for classifying non-verbal voice expression

Our network is composed of 4 convolutional layers followed
by a flatten layer, with each convolutional layer having a ReLU
activation function. The first Conv2D layer receives the input
shape with 64 filters, a kernel size of 3, and a stride of 1. We
use the ‘same padding’ operation to ensure that the output of
the layer is of the same height and width as the input. This is
followed by a 2×2 MaxPooling2D layer to reduce the dimension
of the input shape. We repeat this sequence three times with
3×3 convolutions of 128 filters. The output of the convolutional
layers is converted to a one-dimensional array by a flatten layer,
which is then passed to the next layers with a dropout rate of
0.5. A linear layer is used in the final stages before the output
layer with a softmax activation function, which consists of 6
nodes for our classification task. We used ADAM for learning
rate control and cross-entropy as the loss function.

We built the model utilizing PyTorch [24] and the audio and
speech processing capabilities of the Torchaudio toolkit [25] for
data preprocessing and feature extraction.

5. Experiments
5.1. Comparison with the baseline

We compared our systems with a neural-network-based base-
line, Piczak-CNN [17], which is designed for classifying en-
vironment sounds and which has been used in several stud-
ies as baseline [26, 27]. The original Piczak-CNN architec-
ture yielded weak performance in our experiments, so we fine-
tuned it (number of mel-bands, learning rate) on CNVVE for a

stronger baseline. The models were tested in a cross-validation
scheme of 5 folds using an 80/20 training/test split on the
dataset. Our model achieves a mean test accuracy of 87.6%, sur-
passing the accuracy of the Piczak-CNN model, which achieved
82.1%. Figure 2 shows the mean accuracy of our model perfor-
mance for 6 classes of over 50 epochs.

5.2. Experiments on detection feature sets

5.2.1. MFCC vs. Mel Spectrogram

We observed through experiments that using the mel spectro-
gram representations for the audio data provided better results
compared to Mel-Frequency Cepstral Coefficients (MFCC) rep-
resentation. We trained the model using both techniques as in-
put with different shape values and the models trained using
mel spectrogram on average showed better performance by at
least 7%. We note that other existing studies such as [23, 22]
also confirm our finding that predictive models based on the mel
spectrogram perform better than models based on conventional
features, e.g., MFCC.

5.2.2. Finding The Right Number of Mel Bands

The majority of recent speech classification literature based on
mel spectrogras suggest mel-spectrograms consisting of at least
64 frequency bands to keep an optimal balance between learn-
ing rate and recognition accuracy [23, 8].

By experimenting with mel-spectrograms with 32, 64, 96
and 128 bands as input features, we discovered that the optimal
balance between learning rate and recognition accuracy can be
reached using mel-spectrograms with 96 bands. Classification
test accuracy increased from 76% to 88% after increasing the
number of mel bands from 64 to 96. Extending to 128-band
mel-spectrograms did not significantly improve the accuracy,
however, increased the training time. Using mel-spectrograms
consisting of 32 mel-frequency bands lead to a significant in-
crease in error rate.

5.3. Data augmentation

In our data augmentation set of experiments, we trained our
network with a set of different augmentation methods on our
dataset and evaluated it on unmodified test sets. Figure 3 il-

Figure 2: Standard deviation and mean of the achieved accu-
racy from 5 folds cross-validation testing.
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Figure 3: Classification error for different augmentation meth-
ods.

lustrates the results. The first bar shows the result of the com-
bination of all augmentation methods together and the last bar
depicts the base result without any data augmentation. The sec-
ond bar shows the classification error rate of augmenting the
test set, in this case only the test set was augmented leaving the
training unmodified. All other lines show the results of a single
data augmentation method at a respective strength.

The model accuracy has improved from about 88% to over
96% by applying all the augmentation techniques. Adding
background noise effects, such as fan noise, rain noise, con-
versations in the background, etc., give a modest improvement,
with the white noise and urban ambiance noise having the best
impact resulting in a significant reduction in classification error
of up to 60%. Similarly, loudness change in a range of ±5dB
to ±15dB significantly diminishes the error rate by more than
a half. Furthermore, applying effects, e.g., room impulse re-
sponse filter, increased the model accuracy by 4%.

We have also examined the effect of pitch shifting in a range
of ±3 to ±6 steps. We chose this range as we noticed no notice-
able change in lower values and corruption in some files when
increasing the amount further. Shifting the pitch up and down
by 3 steps shows the best effect cutting the error rate by half.
Shifting the pitch in other values also increased the model ac-
curacy by at least 1%.

After applying the data augmentation to the initial data, the
total number of files increased to 41,030.

5.4. Analysis of model performance

Figure 4 shows the confusion matrix of our best-performing
model using mel spectogram feature trained on the augmented
data. This matrix shows the performance of the model in accu-
rately classifying the test data, with the number of correctly and
incorrectly classified samples indicated for each class. We can
see that out of 374 unseen testing data, our model has incor-
rectly classified only 17 testing samples reaching an accuracy
of over 95%. Furthermore, it performs well in all the classes

Figure 4: Confusion matrix of model predictions on unseen test-
ing data.

with 90% being the least accurate for the class “hush” which is
shown in Fig. 4.

6. Conclusions
In this work, we presented CNVVE, a dataset of non-verbal
voice expressions, collected from 42 participants, and a CNN-
based model that can classify them with high accuracy.

We hope the CNVVE dataset, our proposed data augmen-
tation, classification pipeline, and our experimental results can
help the HCI and voice-related research communities and serve
as a basis and benchmark for future research.

We trained the model using all the data for training creating
a production-ready model that is traced and can be loaded also
via the C++ API of PyTorch to be used on various platforms
like smart devices with ease. We envision further work to uti-
lize our proposed non-verbal voice input recognition system to
create exciting applications in the domain of accessibility, en-
tertainment, and communication.

Additionally, the dataset presented here has the potential to
be used for pre-training a network for a different purpose. ASR
systems often struggle with transcribing non-lexical fillers, such
as “mm-hmm” or “uh-uh,” that occur frequently in spontaneous
speech. This can result in the omission of critical information,
as these simple expressions can carry significant meaning and
express the speaker’s opinions during a conversation.

7. Acknowledgements
We would like to express our sincere gratitude to all the par-
ticipants who generously donated their voice recordings to our
dataset, as well as the technical contribution of Srinivas Ku-
mar to this project. We also extend our thanks to our institu-
tions for their support. This research was partially funded by
BMWK/ESF1 and BMBF2 under grant no. 03EFRBW231 and
16DHBKI041, respectively.

8. References
[1] K. T. Mengistu and F. Rudzicz, “Adapting acoustic and lexical

models to dysarthric speech,” in 2011 IEEE International Con-

1https://https://www.bmwk.de
2https://www.bmbf.de

1556



ference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2011, pp. 4924–4927.

[2] Z. Chen, B. Ramabhadran, F. Biadsy, X. Zhang, Y. Chen, L. Jiang,
F. Chu, R. Doshi, and P. J. Moreno, “Conformer Parrotron: A
Faster and Stronger End-to-End Speech Conversion and Recogni-
tion Model for Atypical Speech,” in Proc. Interspeech 2021, 2021,
pp. 4828–4832.

[3] J. McCormack, S. McLeod, L. J. Harrison, and L. McAllister,
“The impact of speech impairment in early childhood: Inves-
tigating parents’ and speech-language pathologists’ perspectives
using the icf-cy,” Journal of Communication Disorders, vol. 43,
no. 5, pp. 378–396, 2010. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0021992410000365

[4] N. Peixoto, H. G. Nik, and H. Charkhkar, “Voice controlled
wheelchairs: Fine control by humming,” Computer methods and
programs in biomedicine, vol. 112, no. 1, pp. 156–165, 2013.

[5] R. Hedeshy, C. Kumar, R. Menges, and S. Staab, “Hummer:
Text entry by gaze and hum,” in Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, ser.
CHI ’21. New York, NY, USA: Association for Computing
Machinery, 2021. [Online]. Available: https://doi.org/10.1145/
3411764.3445501

[6] M. S. Hawley, P. Enderby, P. Green, S. Cunningham,
S. Brownsell, J. Carmichael, M. Parker, A. Hatzis, P. O’Neill, and
R. Palmer, “A speech-controlled environmental control system for
people with severe dysarthria,” Medical Engineering and Physics,
vol. 29, no. 5, pp. 586–593, 2007. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S135045330600138X

[7] J. A. Bilmes, X. Li, J. Malkin, K. Kilanski, R. Wright,
K. Kirchhoff, A. Subramanya, S. Harada, J. A. Landay,
P. Dowden, and H. Chizeck, “The vocal joystick: A voice-
based human-computer interface for individuals with motor
impairments,” in Proceedings of the Conference on Human
Language Technology and Empirical Methods in Natural
Language Processing, 2005, p. 995–1002. [Online]. Available:
https://doi.org/10.3115/1220575.1220700

[8] G. Zhu, J.-P. Caceres, and J. Salamon, “Filler Word Detection and
Classification: A Dataset and Benchmark,” in Proc. Interspeech
2022, 2022, pp. 3769–3773.

[9] T. Kourkounakis, A. Hajavi, and A. Etemad, “Detecting multi-
ple speech disfluencies using a deep residual network with bidi-
rectional long short-term memory,” in ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2020, pp. 6089–6093.

[10] K. J. Piczak, “Esc: Dataset for environmental sound classifica-
tion,” in Proceedings of the 23rd ACM International Conference
on Multimedia, ser. MM ’15. New York, NY, USA: Associa-
tion for Computing Machinery, 2015, p. 1015–1018. [Online].
Available: https://doi.org/10.1145/2733373.2806390

[11] M. Funk, V. Tobisch, and A. Emfield, “Non-verbal auditory
input for controlling binary, discrete, and continuous input in
automotive user interfaces,” in Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, ser.
CHI ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 1–13. [Online]. Available: https://doi.org/10.
1145/3313831.3376816

[12] S. Harada, J. O. Wobbrock, and J. A. Landay, “Voice games:
Investigation into the use of non-speech voice input for mak-
ing computer games more accessible,” in Human-Computer In-
teraction – INTERACT 2011, P. Campos, N. Graham, J. Jorge,
N. Nunes, P. Palanque, and M. Winckler, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2011, pp. 11–29.

[13] T. Igarashi and J. F. Hughes, “Voice as sound: Using non-verbal
voice input for interactive control,” in Proceedings of the
14th Annual ACM Symposium on User Interface Software and
Technology, ser. UIST ’01. New York, NY, USA: Association
for Computing Machinery, 2001, p. 155–156. [Online]. Available:
https://doi.org/10.1145/502348.502372

[14] A. J. Sporka, S. H. Kurniawan, M. Mahmud, and P. Slavı́k,
“Non-speech input and speech recognition for real-time control
of computer games,” in Proceedings of the 8th international ACM
SIGACCESS conference on Computers and accessibility, 2006,
pp. 213–220.

[15] R. Hedeshy, C. Kumar, M. Lauer, and S. Staab, “All birds
must fly: The experience of multimodal hands-free gaming with
gaze and nonverbal voice synchronization,” in Proceedings of
the 2022 International Conference on Multimodal Interaction,
ser. ICMI ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 278–287. [Online]. Available:
https://doi.org/10.1145/3536221.3556593

[16] S. Harada, J. O. Wobbrock, and J. A. Landay, “Voicedraw:
A hands-free voice-driven drawing application for people with
motor impairments,” in Proceedings of the 9th International
ACM SIGACCESS Conference on Computers and Accessibility,
ser. Assets ’07. New York, NY, USA: Association for
Computing Machinery, 2007, p. 27–34. [Online]. Available:
https://doi.org/10.1145/1296843.1296850

[17] k. J. Piczak, “Environmental sound classification with convolu-
tional neural networks,” in 2015 IEEE 25th International Work-
shop on Machine Learning for Signal Processing (MLSP), 2015,
pp. 1–6.

[18] H. Zhang, I. Mcloughlin, and Y. Song, “Robust sound event recog-
nition using convolutional neural networks,” 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 559–563, 2015.

[19] WebRTC, “Webrtc voice activity detection,” 2023. [Online].
Available: https://webrtc.org

[20] V. Digalakis, S. Rouvas, and N. Fakotakis, “A comparison of
feature extraction techniques for automatic speech recognition,”
Speech Communication, vol. 13, no. 1, pp. 1–14, 1993.

[21] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An asr corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 5206–5210.

[22] S. Rao, V. Narayanaswamy, M. Esposito, J. Thiagarajan, and
A. Spanias, “Deep learning with hyper-parameter tuning for
covid-19 cough detection,” in 2021 12th International Conference
on Information, Intelligence, Systems and Applications (IISA),
2021, pp. 1–5.

[23] M. Lesnichaia, V. Mikhailava, N. Bogach, I. Lezhenin, J. Blake,
and E. Pyshkin, “Classification of Accented English Using CNN
Model Trained on Amplitude Mel-Spectrograms,” in Proc. Inter-
speech 2022, 2022, pp. 3669–3673.

[24] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 2019, pp. 8024–8035.

[25] Y.-Y. Yang, M. Hira, Z. Ni, A. Chourdia, A. Astafurov, C. Chen,
C.-F. Yeh, C. Puhrsch, D. Pollack, D. Genzel, D. Green-
berg, E. Z. Yang, J. Lian, J. Mahadeokar, J. Hwang, J. Chen,
P. Goldsborough, P. Roy, S. Narenthiran, S. Watanabe, S. Chin-
tala, V. Quenneville-Bélair, and Y. Shi, “Torchaudio: Build-
ing blocks for audio and speech processing,” arXiv preprint
arXiv:2110.15018, 2021.

[26] J. Sharma, O.-C. Granmo, and M. Goodwin, “Environment Sound
Classification Using Multiple Feature Channels and Attention
Based Deep Convolutional Neural Network,” in Proc. Interspeech
2020, 2020, pp. 1186–1190.

[27] A. Khamparia, D. Gupta, N. G. Nguyen, A. Khanna, B. Pandey,
and P. Tiwari, “Sound classification using convolutional neural
network and tensor deep stacking network,” IEEE Access, vol. 7,
pp. 7717–7727, 2019.

1557


