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Abstract
Recently, large pretrained language models have demonstrated
strong language understanding capabilities. This is particularly
reflected in their zero-shot and in-context learning abilities on
downstream tasks through prompting. To assess their impact
on spoken language understanding (SLU), we evaluate several
such models like ChatGPT and OPT of different sizes on mul-
tiple benchmarks. We verify the emergent ability unique to the
largest models as they can reach intent classification accuracy
close to that of supervised models with zero or few shots on var-
ious languages given oracle transcripts. By contrast, the results
for smaller models fitting a single GPU fall far behind. We note
that the error cases often arise from the annotation scheme of the
dataset; responses from ChatGPT are still reasonable. We show,
however, that the model is worse at slot filling, and its perfor-
mance is sensitive to ASR errors, suggesting serious challenges
for the application of those textual models on SLU.
Index Terms: spoken language understanding, pretrained lan-
guage models, zero-shot learning, in-context learning

1. Introduction
Gigantic pretrained language models like GPT3 with 175B pa-
rameters trained on 45TB texts have demonstrated surprisingly
strong performance on various downstream language tasks with
little or no data [1]. Since then, GPT3 has evolved into GPT3.5
through pretraining on code as in Codex [2] which powers
GitHub Copilot, as well as through instruction fine-tuning that
aligns the model’s responses given instructions with human
expectations using reinforcement learning, known as Instruct-
GPT [3]. When further combined with fine-tuning on dialogues
in a similar way, the resulting model, ChatGPT, has gained
great popularity since its release in late 2022, displaying highly
human-like language understanding and generation capabilities
[4, 5, 6], and has become the core of a number of AI-powered
applications. Combined with the ability to utilize tools with
external APIs as in Toolformer [7] as well as conducting web
search as in WebGPT [8] and New Bing, a competent and versa-
tile AI assistant has taken shape. Therefore, a question arises: is
the model capable of conducting spoken language understand-
ing (SLU) tasks like current voice assistants?

Current SLU approaches are substantially different from
how we use those GPT3-based models. Traditionally, SLU
is carried out using a cascaded pipeline, which includes an
automatic speech recognition (ASR) module taking audio as
inputs, and a natural language understanding (NLU) module
working on ASR transcripts, hypotheses, or lattice to predict la-
bels for tasks like intent classification (IC) and slot filling (SF)
[9, 10]. Recently, end-to-end approaches that directly predict
labels from speech [11, 12, 13] become more popular, and pre-

trained language and speech models are also introduced into
SLU [14, 15, 16]. Additionally, there are works focused on
low-resource or few-shot textual IC/SF [17, 18, 19, 20, 21].

However, those methods are based on the paradigm of su-
pervised training or fine-tuning with a set of possibly large-scale
training data. In contrast, considering the difficulty of fine-
tuning the whole GPT3 model, recent NLP research highlights a
different scheme, namely prompting [22]: given a fixed textual
description of the task known as a prompt without any training
data, the language model may correctly carry out the task. Fur-
thermore, the in-context learning approach adds a few paired
examples in the textual prompt to further direct the model to-
wards the desired outputs. Such methods are different from tra-
ditional zero or few-shot learning in which the model parame-
ters are fixed. It appears to be clumsy and may perform worse
than fine-tuned smaller models like T5-11B at the beginning
[23]. Additionally, larger models were believed to be unscal-
able to reach the desired performance given the costs [1, 24, 25],
However, recent explorations reveal the emergent abilities of
larger models like GPT3-175B and PaLM 540B [26]: prompt-
ing shows low or even close-to-random performance on multi-
ple tasks until a certain scale of the model where a breakthrough
emerges [27, 28]. This breakthrough enables chain-of-thought
prompting to surpass the smaller models fine-tuned on rich data
[29, 30], allows reasoning using internal knowledge with results
comparable to external knowledge retrievers [31], and leads to
better robustness and generalization [30, 32].

There have been several works on SLU employing prompts,
such as fine-tuning pretrained models like T5 aided by prompts
[33, 34], fine-tuning embeddings prepended to the inputs known
as continuous prompts [35, 36], and end-to-end SLU by in-
context learning on GPT2 with a fine-tuned audio encoder [37].
They are nevertheless distinct from the current prompting and
in-context learning scheme, and have not approached the regime
of emergent abilities. Hence the potential and limitations of this
new type of method on SLU remain unexplored. Therefore we
endeavor to undertake it by designing prompts and evaluating
these models on multiple SLU benchmarks, including SLURP
[38] and the multilingual MINDS-14 [39]. Since these models
take textual inputs, beside oracle transcripts, we also use ASR
transcripts from Whisper [40], which embodies a pipeline upon
completely off-the-shelf pretrained models. Furthermore, we
compare smaller models that can easily run on a common GPU,
namely GPT2 [41] and several OPT models [42].

As a result, we discover that the largest GPT3.5 and Chat-
GPT models achieve high performance on intent classification
under zero-shot or few-shot in-context scenarios that are close
or even better than models fine-tuned on the whole dataset,
when given the oracle transcripts. This is unique to those large
models as the smaller GPT2, OPT and GPT3.5 Curie models

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

1109 10.21437/Interspeech.2023-1799



User: We will show you some commands by a user to a voice assistant
like Siri or Olly. Please determine that the command is under which of
the following predefined scenarios [...]
Audio: volume up, volume down, volume mute, volume other
 
Some examples are:
1. “book a taxi to the airport for tomorrow morning”: the scenario and
intent is “Transport: taxi”. [...]
 
Please give answers like: 1. Email: query contact, 2. IoT: cleaning,
etc. The intent in your answer must match one of the intents for the
corresponding scenario given above. If you are uncertain, choose the
one that you think is the most likely.
How about the following commands:
1. event reminder mona tuesday
2. what is the exchange rate of us dollar to pound sterling [...]
ChatGPT: 
1. Calendar: set
2. Question Answering: currency [...]

Figure 1: An example of ChatGPT doing SLURP intent classi-
fication in a conversation. The list of options, questions, and
answers are partially omitted for brevity.

have much lower performance and are entirely ineffective un-
der zero-shot cases. Even in the cases where the predictions
differ from the labels, the predictions are mostly reasonable,
often due to the ambiguity of the sentence. This raises the ques-
tion that the tasks to predict intermediate IC/SF labels might
not sufficiently reveal the potential of the model. However, for
the slot filling task with a more complicated task definition, the
performance is much worse. Additionally, the accuracy drops
significantly when using ASR transcripts. We show that the
models have limited awareness of word pronunciations and pos-
sible ASR errors, which poses challenges for directly deploy-
ing those models for real-world SLU. To facilitate reproduc-
tion, relevant resources and prompts are available at https:
//mutiann.github.io/papers/ChatGPT_SLU/.

2. Methods
We design prompts to be given to ChatGPT for the intent clas-
sification and slot filling tasks as in Figure 1. We begin by ex-
plaining the background of the task, and then provide options,
like possible intents. We rewrite the names of the scenarios and
actions in natural language, for example, with the underlines in
the name removed. For in-context learning cases, several exam-
ples are further appended. Following by instructions about the
answer format are the questions. Several questions are asked in
a batch for better efficiency. For instance, in the case of Chat-
GPT on SLURP, we ask 45 questions in a conversation, with
the first 5 questions appended to the instructions, and the re-
maining 40 questions split into 2 rounds to be asked. We then
collect results from each line of the answer that corresponds
with each question by text matching. If the answer could not
be identified, we retry up to 3 times. As for ChatGPT, we use
the legacy (a.k.a. default, codenamed text-davinci-002-render-
paid) model available on the webpage, which gives slightly dif-
ferent results compared to the faster default (a.k.a. turbo, code-
named text-davinci-002-render-sha) model. For slot filling, we
further explain the meaning of each entity type. While as for
GPT3.5, we adopt the largest text-davinci-003 model as well
as the smaller text-curie-001 model1, using a slightly different
prompt to fit the task of text completion. Since GPT3.5 is called

1The sizes of Davinci and Curie are estimated to be comparable
to GPT3 175B and 6.7B respectively, according to Eleuther AI as in
https://blog.eleuther.ai/gpt3-model-sizes/

Table 1: Accuracy for various GPT3-based models on SLURP
intent classification task with zero or few examples.

#Examples 0 10 20 30

GPT3.5 72.86% 74.55% 77.27% 77.44%
w/ bias 75.86% 75.59% 78.31% 77.87%
Curie w/ bias 5.01% 4.91% 3.80% 3.77%

ChatGPT 79.25% 80.33% 83.93% 80.16%
Turbo ver. 78.98% 80.03% 81.78% 79.62%

by the OpenAI API, more customization is allowed, including
logit bias to ensure that only tokens that may appear in the
answer could be generated. While as for smaller models, we
use GPT2 large (774M) [41], the widely-used predecessor, as
well as OPT, an open-sourced reproduction of GPT3 with var-
ious sizes available [42]. We picked the 1.3B, 2.7B, and 6.7B
versions that could be easily run on a single GPU, though we
have to use half-precision inference on the 6.7B one. We per-
formed generation with an 8-beam search, using a prompt simi-
lar to GPT3.5 but perform text completion with one question at
a time. Whisper-large is chosen for performing ASR [40].

The models are evaluated on the test split of two different
datasets: SLURP is a large-scale IC and SF dataset of com-
mands to voice assistants with over 141k samples annotated
with 60 different intents formulated as scenario-action pairs, as
well as 56 types of entities or slots. There have been limited
evaluations on a task with so many different types, as current
works are mostly focused on tasks with a small label space
(e.g. positive/neutral/negative in sentiment analysis), though
lower performance has been found on named entity recognition
(NER) [6] and dialogue state tracking [5] with a smaller label
space but share some similarity with this task. MINDS-14 is a
smaller banking scenario IC dataset of 14 intents in 14 different
languages, for which we use the XTREME-S split [43]. Evalu-
ations are performed on the test split, while in-context training
examples are picked from the training or validation split.

3. Experiments
3.1. Oracle texts

We first evaluate the models from OpenAI using oracle tran-
scripts in SLURP for intent classification. As shown in Table 1,
ChatGPT achieves an accuracy of 79.25% with zero shot, and
83.93% with only 20 examples. Despite there being 60 dif-
ferent types of intents in SLURP, ChatGPT achieves the result
even without examples in many of the categories. The result
is on par with, or not far from, many supervised NLU mod-
els trained on the full oracle transcripts dataset, like SF-ID with
82.25%, HerMiT with 84.84% [38], and conformer deliberation
with 89.0% [44], or end-to-end methods like fine-tuning Hu-
BERT with 89.38% [14]. While more training examples seem
to have limited or no improvements, as shown by the results on
30 examples. This could be possibly due to the bloated length
of the prompt. When we use a more verbose version of the
prompt with 20 examples but with 1260 tokens, similar to the
30-example one, the accuracy drops to 81.41%. ChatGPT gives
slightly better performance compared to GPT3.5 even with to-
ken bias, possibly thanks to its additional dialogue fine-tuning,
while the faster Turbo version shows slightly inferior results.

The results obtained with smaller models are presented in
Table 2 in addition to the Curie results above. It is evident that
the performance falls far behind the presumed 175B GPT3.5
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Table 2: Accuracy for smaller language models on SLURP in-
tent classification task with zero or few examples. A 30-example
prompt is too long for GPT2 with a 1024 token window.

#Examples 0 10 20 30

GPT2 (774M) 6.66% 8.88% 8.31% -
OPT-1.3B 5.58% 10.69% 17.85% 17.01%
OPT-2.7B 7.06% 28.65% 26.66% 36.97%
OPT-6.7B 4.37% 28.18% 35.14% 42.40%

Table 3: Accuracy for intent classification on different lan-
guages from MINDS-14 with ChatGPT, compared to the super-
vised textual model using full data.

en-US fr-FR pl-PL ko-KR

0-shot 95.4% 97.4% 90.0% 89.2%
1-shot 97.9% 99.3% 96.1% 90.5%

LaBSE [39] 95.1% 93.1% 89.2% 91.4%

and ChatGPT models. The model size is apparently the most
critical factor affecting the performance, while the number of
examples also makes a difference. Relatively larger (e.g. 6.7B)
models can better leverage the increased examples, while none
of the zero-shot experiments work. This is in stark contrast to
the largest models where the number of examples has limited
impact and the zero-shot cases also show good results. This
suggests that the largest models possess sufficient capabilities
through pretraining to comprehend the task explanation and the
input question without additional training examples. The role of
the training examples is more to guide the model to align with
the requirements of the task that are not elaborated in the task
description. In contrast, in-context examples are more impor-
tant for smaller models that lack sufficient internal knowledge.

We then evaluate the models on four different languages
from MINDS-14 selected based on their proportion in the GPT3
training data: Among 118 languages in the data, 92.6% are in
English by word count, while the 2nd-ranked French accounts
for 1.8%. Other languages are exceptionally sparse: Polish
(ranked 10th) for 0.16%, and Korean (28th) for 0.017%. Never-
theless, ChatGPT generalizes to all of these languages with sim-
ilar or better performance compared to the supervised LaBSE
[45] reported in [39], though using a different split. The model
can almost perfectly solve the task on English and the rather
low-resource French with zero shot, as well as Polish using only
14 examples or 1 shot per category to align with the task. Even
on Korean with extremely sparse training data, the zero-shot
and one-shot results are still satisfactory. This demonstrates
that the model enjoys inherent multilinguality to generalize its
strong language understanding capability to various languages.

However, when it comes to the slot filling task with a more
complicated task definition, the situation is different. As in Ta-
ble 4, the F1 score is poor and much lower than the models like
HerMiT with 78.19% F1 [38]. Therefore, the approach to better
leveraging ChatGPT on this task remains to be explored.

3.2. ASR transcription

We then evaluate the model on SLURP intent classification
using ASR transcripts, which reflects the real SLU scenario.
The SLURP recordings are transcribed with 16.7% test WER
with the off-the-shelf Whisper, which is acceptable, consider-
ing that the audio is often noisy and an XLSR-based ASR sys-

Table 4: F1 score for slot filling with ChatGPT with different
number of examples.

#Examples 10 20 30

ChatGPT 12.03% 13.00% 13.35%

Table 5: Accuracy for intent classification on SLURP with dif-
ferent number of examples using ASR transcripts.

#Examples 10 20 30

GPT3.5 64.78% 68.95% 68.64%
ChatGPT 72.89% 73.96% 72.85%

tem adapted to the SLURP data reports 15.5% test WER [46].
To our disappointment, the models suffer from significant per-
formance drop processing ASR transcripts as in Table 5, even
though the model is prompted to account for ASR errors.

Considering that GPT3 is capable of correcting language
errors, we are inspired by the chain-of-thought prompts [29] to
first instruct the model to try to correct the ASR errors, and then
determine the scenario and action. Such a prompt with 5 exam-
ples brings 67.15% accuracy on GPT3.5, which alleviates the
issue with a 2.4% improvement compared to the 10-example
prompt, although it is still far from the oracle transcript case
and leads to bloated prompt. We also attempt to directly instruct
GPT3.5 to correct ASR errors, characterized by the replacement
of words with similar pronunciation. Given 1000 error cases,
WER increases from 25.6% to 32.4% after the correction. In
most cases the sentences are more fluent, but ASR errors re-
main. Hence we hypothesize that due to the nature of training
on textual inputs with wordpiece tokenization, the model has
limited awareness of phonetics, as implied by their high error
rates on the IPA task [27]. We further verify that by asking
ChatGPT the names of 50 well-known places with their Ro-
manized transliteration in Chinese and Japanese, e.g., “A city
is called Nyūyōku in Japanese. What’s its name in English?”,
which can be easily guessed by a person knowing the common
pronunciation of Latin letters. However, ChatGPT can correctly
answer only 46% from Japanese and 10% from Chinese, which
further confirms its deficiency in phonetic knowledge.

4. Discussions
Experiments have demonstrated the capability of the model,
though many errors are found. However, it is worthwhile to
look into the error cases to determine if ChatGPT really failed
to understand those text, especially considering that SLURP la-
bels are relatively noisy [46]. Therefore, we check 100 error
cases in the 20-shot ChatGPT experiments, and find that 79% of
them are not errors in the strict sense, as exemplified in Table 6.
Some of the “errors” occur when the input sentence is ambigu-
ous and open to multiple different interpretations. An example
is shown in Figure 2, in which case we find that ChatGPT could
actually provide the correct answer and explain the answer if we
provide clarification that is not given in the command. There are
also some examples for which ChatGPT gives a more accurate
answer than the label. While in many other cases the issues arise
due to the ambiguity of the categories, which are often specified
by the annotation scheme of the SLURP dataset. For example,
asking for news about stock is labeled as “Question answering:
stock,” not “News: query.” This is a fundamental weakness of
prompting: the instructions, examples, and label names in the
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Table 6: Examples of “errors” made by ChatGPT on SLURP intent classification and slot filling. Many of the predictions are also
reasonable, but different from the labels in the dataset.

Command Label ChatGPT Prediction

Is there a groomer in town for cats only? General: quirky Recommendation: locations
In how many hours will it be midnight in London
England.

Date/time: query Date/time: convert

Please tell me news related to the stock market. Question answering: stock News: query
Olly I need a drink. IoT: coffee General: quirky
Can you give me the details of upcoming annual
function on twenty sixth march?

General: quirky Recommendation: events

How long does it take to make vegetable lasagna? Cooking: recipe Cooking: query
Give details of rock sand. Question answering: definition Question answering: factoid

Event reminder Mona Tuesday. Event name: Mona;
Date: Tuesday

Alarm type: reminder; Person: Mona;
Date: Tuesday

Exchange rate of US dollar to pound sterling. News topic: exchange rate of US
dollar to pound sterling

Definition word: exchange rate;
Currency name: US dollar; Currency
name: pound sterling

Take out the milk from the shopping list. List name: shopping List name: shopping; Ingredient: milk

Increase the brightness of the lights. - Change amount: brightness; Device
type: lights

Please send a mail to my friend Divya how are you. Relation: friend; Person: Divya Email address: Divya; Person: friend
Please scan my social media and tell me what’s hap-
pening.

- Media type: social media;
Definition word: what’s happening

User: great song for commute
ChatGPT: The scenario and intent is “Recommendation: music”
User: The user might be asking the assistant to recommend a song for
the commute unknown to the user. But what if we already know what
song the user is talking about, as the device is playing it at the moment?
ChatGPT: If the device is already playing a song and the user says
“great sone for the commute”, then the intent could be “Music: likeness”
as the user is expressing their enjoyment of the current song and
usggesting that it would be a good choice for a future commute.

Figure 2: An example for ChatGPT giving an answer different
from the label (“Music: likeness”) on an ambiguous command.
While ChatGPT is able to determine the answer that matches
the label under an alternative situation.

prompt must fully reveal the goal of the task if it is not typi-
cally observed in the textual corpus, which is difficult when the
task or labeling specification is complicated and subtle, even if
the task itself is straightforward. Such annotation specifications
could be captured by a supervised model given the whole train-
ing set, but impossible for a zero-shot or in-context model.

The phenomenon is more pronounced in the slot filling case
where multiple entities with 56 different types could be ex-
tracted from a single command. The meanings of the labels
often overlap with each other, and the annotations tailored to the
specific scenario of the dataset. For example, normal apps are
extracted as “app name,” and companies as “business name”,
but Uber as “transport agency” and Northern Rail as “trans-
port name,” which would baffle a zero/few-shot model as in Ta-
ble 6. The harm of such counter-intuitive labelling scheme also
matches the observations in [47]. This kind of misalignment
has more impact in such a tagging task as tagging decisions
need to be made on every individual word, which may explain
the observed worse performance on similar tasks like NER and
dialogue state tracking [5, 6]. We also find that ChatGPT may
be biased towards patterns in the limited examples. For exam-
ple, with “tell me about morel mushrooms” labeled as “Defini-
tion word: morel mushroom” in a training example, ChatGPT

tends to label “Definition word” on other sentences like “tell me
what’s happening.” All these examples illustrate the difficulties
of in-context learning on a task with a complicated task goal.

In the evaluations conducted above, we direct the model to
fulfill requirements of the dataset, which are intermediate tasks
in a pipeline. The predictions are then utilized to run external
functions (e.g., sending an email, answering a question, telling
a joke) available in the specific annotated scenario using certain
rules. However, ChatGPT has demonstrated its versatility as a
chatbot that can communicate with users without being bound
by these objectives. For instance, the model often appears to
“understand” the commands in the “error” cases above, and may
directly request for clarification when the input can not be un-
derstood, such as when an ASR error happens. When equipped
with the ability to call external APIs [7, 8], New Bing can read
returned results and reason upon them to determine the final re-
sponse to users’ requests. Additional instructions regarding the
functions can be also fed to the model via some system prompt
in multiple rounds of conversation along with user inputs. In
this way, the model’s ability on such intermediate tasks may
underestimate its actual capability as an end-to-end assistant.

5. Conclusions
In this paper we evaluate large language models on SLU tasks
with prompting. We find that they reach results comparable to
fine-tuning on intent classification of multiple languages, but
not on slot filling, and being sensitive to ASR errors. Future
work will be focused on better prompting and incorporating
phonetic knowledge for ASR-robust or end-to-end systems.
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