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Abstract
Neural transducer ASR models achieve state of the art accuracy
on many tasks, however rare word recognition poses a particu-
lar challenge as models often fail to recognise words that occur
rarely, or not at all, in the training data. Methods of contex-
tual biasing, where models are dynamically adapted to bias their
outputs towards a given list of relevant words and phrases, have
been shown to be effective at alleviating this issue. While such
methods are effective at improving rare word recognition, over-
biasing can lead to degradation on common words. In this work
we propose several extensions to a recently proposed trie-based
method of contextual biasing. We show how performance of
the method can be improved in terms of rare word recognition,
especially in the case of very large catalogues, by introducing
a simple normalisation term, how the method can be trained as
an adapter module, and how selective biasing can be applied to
practically eliminate over-biasing on common words.
Index Terms: speech recognition, contextual biasing, person-
alisation

1. Introduction
Neural transducer automatic speech recognition (ASR) models
such as recurrent neural network transducer (RNN-T) [1] have
been widely adopted due to their ability to achieve state of the
art performance on a variety of tasks. While recognition accu-
racy on common words is typically high, such models often fail
to reliably recognise words that were seen rarely, or not at all,
in the training data [2]. Rare word recognition is particularly
important for applications that rely on dynamic content, includ-
ing calling and messaging (contact names) and entertainment
(song titles, playlist names) where target entities are often also
rare words. Contextual data is sometimes available in these use-
cases, with such data being either global (e.g. media catalogues)
or user-specific (e.g. address books, favourite song titles). The
challenge then becomes how to best make use of this data.

Previously, ‘hybrid’ ASR systems could be adapted to
recognise new words by updating pronunciation lexicons and
language models using text-only data, with grapheme-to-
phoneme models used to generate pronunciations. This ap-
proach is not possible with neural transducer models trained to
directly estimate text from acoustic features. Language-model
adaptation can still be beneficial, but the impact is often less
significant; first-pass language model fusion methods such as
shallow fusion can be sensitive to combination weights [3, 4],
while second pass language model rescoring relies on words
existing in n-best lists generated by the first pass [5].

In the case of global catalogues, models can be updated of-
fline by fine-tuning on synthetically generated utterances con-
taining target words [6, 7, 8, 9]. When contextual data is more

dynamic, e.g. user-specific playlist names, models need to be
updated at run-time where fine-tuning is computationally infea-
sible. In these cases contextual biasing (CB) can be used to
dynamically update internal model states at run-time such that
the output distribution of the model is biased towards emitting
the given words [10, 11, 12, 13, 14, 15]. As well as the given
words, updates are also typically conditioned on the recognition
prefix or internal model states. CB has been shown to be highly
effective, enabling neural transducer models to emit previously
unseen words, but challenges remain. In particular, recognition
accuracy on common words can be degraded by over-biasing,
especially as the number of words used for biasing grows.

In this work, we focus on trie-based CB [10, 11] and pro-
pose a number of extensions including selective biasing [16, 17]
and adapter training [12, 18] to alleviate over-biasing, and a
simple normalisation term to improve robustness to large bi-
asing lists. Our proposed approach is shown to practically elim-
inate over-biasing while improving accuracy on rare words.

2. Contextual Biasing
Several methods of contextual biasing have been proposed in
the literature, with most methods following the same basic ap-
proach [10, 11, 12, 13, 14, 15]. Given a list of variable-length
contextual entities, C = [c0, c1, . . . , ck], that have been to-
kenised to match the ASR model output vocabulary, a function,
femb, is used to generate entity embeddings:

Ce = [ce0, c
e
1, . . . , c

e
k] ; cek = femb (ck) . (1)

The resulting embeddings are either fixed-dimensional vectors
encoding an entire contextual entity in a single vector [12, 14],
or variable length sequences of embeddings where embeddings
are computed for each element of the tokenised sequence [10,
11, 13]. Given a context vector zs relating to state s, a biasing
vector bs is then computed and added to model state vector hs:

bs = fbias(Ce, zs); ĥs = hs + bs . (2)

zs is typically either the hidden state vector [12], i.e. zs = hs,
or is the partial recognition prefix [10]. hs can be the encoder,
prediction network or joint state vectors.

2.1. Trie-based contextual biasing

Trie-based contextual biasing was recently proposed as a
method of contextualising prediction network states, with bi-
asing conditioned on the partial recognition prefix ys at state
s [10, 11, 14]. Tokenised contextual entities, C, are encoded
in a trie before recognition begins, as illustrated in Figure 1.
During recognition, the trie is queried at each decoder state (s)
to obtain two sets of symbols to bias the model towards: those
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Figure 1: Example trie built from the list of contact names
C = [georgina, george, john, joseph, joshua, josie, david], il-
lustrating starts and continuations sets for the partial recogn-
tion prefix “call jo”

that can start a new term in C (starts), and those that can extend
ys to continue a term in C (continuations). The corresponding
embeddings for all symbols in the set of starts and continuations
are then retrieved and combined to form the biasing vector used
to update the prediction network output vector.

More formally, the function f trie(C, y) queries the trie
built from C, using suffixes of y with length up to min(U,H),
where U is the length of y and H is a hyper-parameter used to
limit the maximum suffix length. The set of starts is returned
when ys = ∅. Given a symbol index, i, and embedding matrix
W , femb(i,W ) performs a simple embedding lookup. bs is
then the sum of embeddings selected by f trie and returned by
femb:

fbias(C, ys) =
∑

m

femb
(
f trie (C, ∅)m ,W starts

)
+

∑

m

femb
(
f trie (C, ys)m ,W cont

)
,

(3)

where m denotes the index of a word-piece returned by
f trie. Embedding matrices W starts and W cont are learnt
alongside other model parameters. Dimensions of embeddings
and prediction network hidden state vectors must be the same.

We propose several modifications to this approach with the
aim of improving robustness, eliminating over-biasing, and re-
ducing the memory footprint of the method. These are de-
scribed in the following sections.

2.1.1. Adapter training

In [10], joint network weights are re-trained from scratch along-
side the embedding matrices W starts and W cont starting from
a model trained without contextual biasing. In this work we
propose freezing the entire baseline model and training the con-
textual biasing components as adapters as per [12]. Adapter
training is expected to make it easier to preserve baseline model
performance and reduces the number of trained parameters.

2.1.2. Projection layer

We propose decoupling the embedding dimension from the
prediction network hidden state dimension by adding a fully-
connected layer with swish activation function [19] after fbias:

bs = swish
(
W proj · fbias(Ce,ys)

)
. (4)

We do not use a bias term to ensure all elements of bs remain
zero when fbias is also zero. This layer is expected to be bene-
ficial in two ways: i.) the dimensionality of embeddings can be

reduced, and ii.) the non-linear transformation should help the
model to converge with adapter-style training.

2.1.3. Normalised embeddings

In existing works, embedding vectors are not scaled before sum-
mation [10, 11, 13]. The magnitude of biasing vectors therefore
increases proportionally to the number of starts (Nstarts) and
continuations (Ncont) returned by f trie. This is in contrast to
the attention-based method proposed in [12] where biasing vec-
tors are computed as a weighted average of entity embedding
vectors. Motivated by this approach, we propose normalising
the summation in (3) using uniform weighting, i.e.:

f̂bias(Ce,ys) =
fbias(Ce, ys)

Nstarts +Ncont
. (5)

This approach could be further exploited if entity priors were
available, e.g. frequency of played song titles.

2.1.4. Continuation-only biasing

In Eq. (3), f trie (Ce, ∅) is invariant to the active recognition
prefix, ys. For each utterance, this results in a constant fac-
tor being added to internal model states and may cause output
probabilities to be biased in cases where biasing is not required.
We therefore analyse the impact of dropping the term relating
to starts from Eq. (3).

2.1.5. Shared embeddings

By decoupling the embedding dimensionality from the predic-
tion network state dimension we can re-use prediction network
input embedding weights, W pred, for biasing, i.e. W starts =
W cont = W pred, reducing the number of trainable parameters.

2.1.6. Slot-triggered contextual biasing

Selective biasing uses cues from the model to determine when
biasing is necessary so that biasing can be disabled when it
is not required to reduce over-biasing. Different forms of se-
lective biasing have been explored in literature, e.g., gated
adapters [17], where an additional component is added to the
model and trained to predict the probability of biasing being
necessary for a particular frame. In this work, we explore
the use of slot-triggered biasing [16, 20], where the neural
transducer is trained to emit opening and closing tags around
words or phrases that should be biased. For example, in the
case of contact name biasing the model might predict call
op ContactName phil cl ContactName. During de-
coding the contextual biasing adapter is only activated after an
opening tag has been emitted by the model. In all other cases,
the biasing vector bs is set to zero. Biasing remains active until
the corresponding closing tag is emitted by the model. When
training models for use with slot-triggered biasing we apply
masking to the biasing states to match conditions between train-
ing and inference as described in [16].

3. Experimental Analysis
3.1. Dataset and evaluation metric

We used an in-house American English voice assistant dataset,
with each utterance consisting of audio, transcription, and a list
of contextual entities. The training data is not associated with
identifying information, but some utterances contain named en-
tities. Utterances were randomly sampled from the voice assis-
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Table 1: Ablation study of proposed improvements. S and C refer to starts and continuations vectors defined in Section 2.1.

ID Method Proj. Embedding Normalise Shared Freeze Target context Trainable General Named entities
layer size embeddings embeddings joint dropout (Pτ ) params WERR (%) WERR-S (%)

0 AttnEnc - 64 3 7 3 0.0 0.6M -0.2 43.2
1 Trie([S; C]) 7 1024 7 7 7 0.5 12.3M -3.5 22.8
2 Trie([S; C]) 7 1024 7 7 3 0.5 8.2M -18.8 15.6
3 Trie([S; C]) 3 512 7 7 3 0.5 4.6M -2.9 15.9
4 Trie([S; C]) 3 512 7 7 3 0.0 4.6M -2.7 27.1
5 Trie([S; C]) 3 512 3 7 3 0.0 4.6M -1.6 38.8
6 Trie(C) 3 512 3 7 3 0.0 2.6M -1.0 37.5
7 Trie(C) 3 512 3 3 3 0.0 0.5M -1.2 36.9

tant traffic across more than 20 domains including Communi-
cations, SmartHome, and Music. The base RNN-T model was
trained on the complete dataset which contains approximately
80k hours of audio. For training contextual adapters we split
this training data into ‘contextual’ and ‘non-contextual’ parti-
tions based on whether utterances contain content from the tar-
get domain, ensuring that 60% of utterances in each training
batch are sampled from the non-contextual partition.

We report results on a 35k utterance general dataset and
a 28k named entity dataset (NE) consisting of utterances from
Communication domain, which contain an entity, which is also
present in the associated biasing catalog. We report relative
word error rate reduction (WERR) on the general dataset and
relative slot word error rate reduction (WERR-S) for named en-
tities on the named entity dataset. Higher values indicate better
performance. The baseline is the RNN-T model without CB.

3.2. Model configuration

Input features are 64-dimensional log filter-bank energies ex-
tracted using a 25 ms analysis window and 10ms frame shift.
Features are downsampled by a factor of three after stacking
three consecutive frames, resulting in 192 feature coefficients
per frame. Ground truth transcripts are tokenised using a word-
piece tokeniser with vocabulary size of 4000 [21, 22]. The
RNN-T encoder network consists of five LSTM layers, each
with 1280 units, with a time-reduction layer (downsampling
factor of two) at layer three. The prediction network consists of
two LSTM layers with 1024 units per layer. The outputs from
the encoder and prediction network are projected to 1024 units.
We use a simple addition for the join operation, followed by the
tanh activation before further projecting to 4001 units (vocab-
ulary size + blank label) in the output layer. The total number
of parameters in the model without CB is 129.2M. Decoding
uses the standard RNN-T beam search [1] with a beam width of
seven. Trie-based biasing adapters are trained with a maximum
catalogue size of 2500. Unless stated otherwise, catalogue size
is limited to 5000 during inference and the catalogue is guaran-
teed to contain the target entity. Contextual adapters are trained
using the Adam optimizer and a warmup-hold-decay learning
rate schedule with 3k step warm-up, 72k step hold, and 25k step
decay. We use a maximum learning rate of 8× 10−4 and a min-
imum learning rate of 6.25× 10−5. 16 GPUs are used to train
the biasing adapters. In some cases, we observe over-fitting
when training the the contextual adapters. In these cases, we
apply target context dropout [10] to regularise the model, i.e.,
we remove the target entity from the catalogue during training
with probability Pτ .

3.3. Attention-based biasing baseline

As an additional stronger baseline, we compare the proposed
trie-based biasing approach to an attention-based contextual bi-

asing approach, which has been proposed in [12]. In this ap-
proach, entity embeddings are computed using a bLSTM net-
work. The biasing function then employs cross-attention to
compute a weighted average of entity embeddings given inter-
nal model states, where the queries are hidden encoder states
and the entity embeddings are are used as keys and values.
We use the same hyper-parameters for the attention-based ap-
proach as [12]. The attention-based contextual adapter adds
608k parameters to the model (< 0.5% of the base RNN-T
model parameters). As the attention-based biasing approach is
more memory hungry compared to the trie-based approach, the
maximum catalog size is set to 300 during training to fit within
memory.

3.4. Experimental results

3.4.1. Adapter training and projection layer

Our experimental results are shown in Table 1. A configuration
based on prior work [10] is represented as ID1. ID1 is shown
to perform well on contextual entities but causes degradation on
general content. We hypothesise that this is due to contextual ut-
terances being over-sampled during training, as well as the use
of embeddings relating to starts being included in the biasing,
resulting in biasing being enabled at all times. We found that
reducing the over-sampling rate significantly reduced improve-
ments in slot error rate on contextual data, further motivating
our pursuit of alternative methods of reducing over-biasing.

As a first step towards training the biasing module as an
adapter, we froze the joint network weights and trained only
the embedding matrices (ID2). While we still see reasonable
improvements on WER-S, a large degradation is observed on
general data. To mitigate this degradation we introduced a pro-
jection layer in ID3 and reduced the embedding dimensional-
ity from 1024 to 512. This is found to be moderately effec-
tive, reducing the degradation on general data to 2.9%, however
WER-S improvements remain relatively low compared to ID1.
After introducing the projection layer we found that target con-
text dropout was no longer required. With Pτ = 0 (ID4) we
now see even lower degradation on general data and WER-S on
contextual entities is now lower than ID1.

3.4.2. Normalised embeddings

Next, we applied normalisation to the biasing vector as de-
scribed in Section 2.1.3 (ID5). This was found to significantly
improve WER-S on the named entity dataset, with WERR-S
increasing from 27.1% to 38.8%, and degradation on general
data also decreasing to less than half that observed with ID1.
This appears to confirm the hypothesis that it is important to
control the magnitude and dynamic range of the biasing vec-
tors. To measure the relationship between the number of en-
tries in the catalogue C and accuracy on the general and named
entities dataset, we carried out an experiment where we gen-
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Figure 2: Impact of catalogue size on general and slot word error rates of CB methods. ST = slot-triggered selective biasing.

Table 2: Impact of reducing embedding dim. (C inputs only)

ID Embedding Shared Trainable General NE
size embeddings params WERR WERR-S

7 512 3 524k -1.2 36.9
8 256 7 1.3M -1.0 36.9
9 64 7 323k -1.2 35.3
10 16 7 81k -1.2 29.3
11 8 7 40k -0.4 23.4
12 4 7 20k -0.4 16.9

erated synthetic catalogues with 10 to 100k domain-relevant
terms per catalogue. Results are shown in Figure 2. Without
normalisation, WER on general data begins to degrade further
beyond 1000 entries per catalogue, with degradation acceler-
ating beyond 2000 entries per catalogue. This corresponds to
an increasing mismatch with training conditions where a cap
of 2500 entries per catalogue was imposed. General WER is
more stable with normalised catalogues (ID5) which suggests
the model fails to generalise to larger catalogues due to the in-
creasing magnitude of biasing vectors. In terms of WER-S on
the named entity dataset, normalisation is found to be particu-
larly beneficial for very large catalogues, with performance ex-
ceeding even the attention-based method when catalogue sizes
increase beyond 1000 entities.

3.4.3. Continuation-only biasing

To further reduce degradation on general data we evaluated the
impact of removing starts embeddings from the biasing vector
(ID6). This was found to be beneficial, with degradation on
general data reducing to 1% rel., with only a relatively small
impact on WER-S. We found that while some entities can no
longer be biased as they are represented as single word-pieces,
these appear in the training data sufficiently often that the model
is able to recognise them without CB. The minor degradation
therefore is mostly comprised of cases where the first word-
piece of less common entities is mis-recognised. Most of these
confusions were phonetically related, e.g. juan −→ one.

3.4.4. Reduced embedding footprint

We investigated two methods to reduce the memory footprint of
trie-based contextual adapter: i.) sharing embeddings with the
prediction network input layer (ID7), and ii.) reducing embed-
ding size (ID8-12). For ID7, the embedding matrix is frozen
when training the biasing adapter. Accuracy was found to de-
grade slightly, however the number of additional parameters of
the model is reduced five-fold over ID6. Table 2 shows the ef-
fect of reducing embedding size. Improvements on named en-
tities remain relatively stable as embedding vectors are reduced

Table 3: Impact of applying selective biasing to trie-based CB.
All systems use shared embeddings.

ID Inputs Selective Trainable General NE
biasing Params WERR WERR-S

7 C 7 524k -1.2 36.9
13 C 3 524k -0.2 37.2
14 [S; C] 3 1.0M -0.4 40.5

from 512 dimensions to 64. Performance of the baseline trie-
based model, ID1, is exceeded by a model with around 40k pa-
rameters (ID11): 200x fewer.

3.4.5. Selective biasing

Slot-triggered biasing is found to be an effective method for
reducing the degradation on general data to as little as 0.2%
(ID13) while maintaining the improvements on the named enti-
ties dataset. Furthermore, we are able to re-introduce the starts
embeddings as there is reduced risk of these degrading general
data as found in Section 3.4.3 (ID14).

3.4.6. Comparison to attention-based neural biasing

Our final trie-based contextual biasing system (ID14) provides
the best trade-off between accuracy improvements on contex-
tual data and degradations on general data. Comparing this sys-
tem with the attention-based neural biasing system, we see that
both systems perform on par, however the trie-based method is
computationally more efficient. In the setup with real contex-
tual catalogues, the attention-based neural biasing slightly out-
performs the proposed trie-based biasing approach (43.2% rel.
WERR-S vs. 40.5% rel. WERR-S). In the experiments with
synthetic catalogs, trie-based biasing slightly outperforms the
attention-based method across all catalogue sizes, see Fig. 2.
Noteworthy here is that trie-based biasing is invariant to cata-
logue size in terms of accuracy on general data. This is in con-
trast to attention-based neural biasing, which exhibits degrada-
tions for very large catalogue sizes.

4. Conclusions
We have demonstrated how over-biasing caused by trie-based
CB can be practically eliminated through the use of adapter
training and selective biasing, and how a simple normalisa-
tion term can improve robustness to large catalogues of biasing
terms. We reduced memory footprint of the method by shar-
ing existing model components with the biasing adapter. With
the proposed improvements, the trie-based method was shown
to achieve on-par performance with a computationally more ex-
pensive attention-based method of contextual biasing.
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