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Abstract
Acoustic echo cancellation (AEC) aims to remove interference
signals while leaving near-end speech least distorted. As the
indistinguishable patterns between near-end speech and inter-
ference signals, near-end speech can’t be separated completely,
causing speech distortion and interference signals residual. We
observe that besides target positive information, e.g., ground-
truth speech and features, the target negative information, such
as interference signals and features, helps make pattern of target
speech and interference signals more discriminative. Therefore,
we present a novel AEC model encoder-decoder architecture
with the guidance of negative information termed as CMNet. A
collaboration module (CM) is designed to establish the corre-
lation between the target positive and negative information in a
learnable manner via three blocks: target positive, target neg-
ative, and interactive block. Experimental results demonstrate
our CMNet achieves superior performance than recent methods.
Index Terms: acoustic echo cancellation, encoder-decoder ar-
chitecture, target positive and negative information

1. Introduction
Acoustic echo arises in a full-duplex voice communication sys-
tem when a near-end microphone picks up audio signals from
a near-end loudspeaker and sends it back to far-end participants
such that the far-end users receive a modified version of their
voice. Acoustic echo cancellation (AEC) aims to suppress the
echo from the microphone signal while leaving the target near-
end signal least distorted.

The traditional AEC applies adaptive filters [1, 2] to iden-
tify the echo path between the loudspeaker and the microphone
at the near-end point. The main assumption that underpins con-
ventional AECs is that the echo path is linear [3]. However, the
power amplifiers and loudspeakers, incredibly cheap and small,
can be the sources of nonlinearity. When nonlinearities occur,
conventional AECs performance decreases the overall achiev-
able quality. Although several nonlinear models [4, 5, 6] have
been utilized, these traditional methods for convergence may
take a lot of work in complex acoustic environments.

Deep learning (DL) has recently gained much attention
for its capacity to model complicated nonlinear relationships
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and has been successfully applied to AEC. DL-based AEC can
be formulated as a supervised speech separation/enhancement
problem [7, 8, 9, 10], which separates near-end speech from the
microphone signal and has shown better performance than their
classical counterparts [11]. However, DL-based methods often
suffer from near-end speech distortion and interference signals
(noise and echo) residual, which suggests some indistinguish-
able patterns between target speech and interference signals are
hard to distinguish.

To alleviate this challenge, some approaches introduce tar-
get negative information and capture its correlation with target
positive information to make the patterns between target and
interference signals more discriminative. However, the defini-
tion of target positive and negative information is diverse and
can be concretely grouped into two categories. The methods of
the first category [12, 13, 14] aim to predict near-end speech by
adding the characteristics of echo signals that are used as target
negative information, in which a separate algorithm is set to es-
timate the echo signal before the target signal prediction. These
approaches generally consider the echo signal by incorporating
it into loss functions or by directly predicting it as prior knowl-
edge. However, it is difficult to accurately estimate echo signals
when faced with strong nonlinear distortion or excessively high
noise levels [15], which may introduce interfering information
for AEC.

The methods of the second category [16] extract features of
near-end speech as target positive information and features of
interference signals as negative information by utilizing a two-
parallel branch network to model target and interference sig-
nals separately. Subsequently, cross-connections between two
branches are employed to use the information learned from the
other branch to improve the target signal modeling. As a re-
sult, the target positive and negative information have interacted
in a latent representation space, and the interaction makes the
simultaneous modeling of two signals feasible and effective.
Although the two-branch approach ensures the preservation of
both target speech and interference signal information during
the modeling process, cross-connections pass information with-
out any selection resulting in some redundant information. Ad-
ditionally, the two-branch structure requires many parameters,
resulting in high computational costs.

In our study, features whose weights are high and regarded
as helpful information to predict the target signal by the neural
network are considered as target positive information. In con-
trast, features whose weight is low and regarded as interference
information by the network are considered as target negative in-
formation. The aforementioned analysis motivates us to design
a new approach with fewer parameters to explore the correla-
tion between target positive and negative information to make
the patterns between near-end speech and interference signals
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Figure 1: (a) The proposed CMNet. (b) The proposed collaborative module. “FC” denotes feature catcher block.

more discriminative. We propose a collaboration module (CM)
that includes a target positive block, a target negative block,
and an interactive block. The target positive/negative block cap-
tures the target positive/negative features at local-level from the
global-level features. The interactive block integrates the cap-
tured features in a self-adaptive and learnable way to establish a
correlation between target positive and negative features. Only
a single branch structure is required to build the network. In
summary, we propose a novel AEC model, CMNet, which in-
serts CM into the encoder-decoder architecture to achieve supe-
rior performance.

The rest of this paper is organized as follows: In section
2, the problem of the AEC is briefly define. Then the model
architecture is presented in Section 3. Section 4 is the dataset
and experimental settings. Section 5 demonstrates the results
and analysis, and a conclusion is shown in Section 6.

2. Problem formulation
The microphone signal y(n) is a mixture of echo d(n), near-end
speech s(n), and background noise v(n):

y(n) = d(n) + s(n) + v(n) (1)

where n is sample index, d(n) is obtained by a linear or non-
linear transform of the far-end signal x(n). Provided that x(n)
and y(n) are known, the task of AEC is to estimate near-end sig-
nal ŝ(n). A time delay compensation module[17] based on the
generalized cross-correlation phase transform method is used to
align the microphone and far-end signal. Our overall model can
be formulized as:

M̂ = fφ (Xr, Yr, Xi, Yi) (2)
where f and φ denotes CMNet and its network parameters,
X and Y denote x(n) and y(n) after short-time Fourier trans-
form (STFT) respectively, r and i represent real and imaginary
parts of complex spectrogram, M̂ is the estimated complex ra-
tio mask (CRM)[18] optimized by signal approximation, which
can be defined as:

CRM =
YrSr + YiSi

Y 2
r + Y 2

i

+ j
YrSi − YiSr

Y 2
r + Y 2

i

(3)

The final predicted mask of the network M̂ = Mr + jMi can
be defined in polar coordinates

{
Mmag =

√
M2

r +M2
i

Mphase = arctan 2 (Mi,Mr)

and the estimated clean speech ŝ can be expressed:

ŝ = Ymag ·Mmag · eYphase+Mphase (4)

3. Proposed algorithm
In our design, the proposed CMNet model consists of an
encoder-decoder network to learn and reconstruct target signal
and a collaboration module network to extract and combine tar-
get positive and negative features. The entire CMNet architec-
ture is shown in Fig.1(a).

3.1. Encoder and Decoder

The encoder contains three 2-D convolutional layers with a ker-
nel size of (3, 5). The stride is (1, 1) for the first layer and (1,
2) for the following two. The channel numbers are [16, 32, 64].
The decoder consists of three gated blocks followed by one 2-D
convolutional layer[19]. The first layer in the gated block is a
deconvolutional layer, followed by a 2-D convolutional block
learning multiplicative mask for the corresponding feature from
the encoder. The purpose of this mask is to suppress undesired
parts of the feature. Afterward, the masked encoder feature is
concatenated with the deconvolutional feature and inputted into
another 2-D convolutional layer to produce the residual repre-
sentation. After three gated blocks, the final convolutional layer
learns CRM. The kernel size for all 2-D deconvolutional layers
is (3,5). The stride is (1,2) for the first two gated blocks and
(1,1) for the last. The channel numbers are 32, 16, and 2, re-
spectively. All the 2-D convolutional layers in the decoder have
a kernel size of (1,1), a stride of (1,1), and a channel number
the same as that of their deconvolutional layers. All of the con-
volutional layers in both the encoder and decoder are preceded
by a batch normalization (BN) layer and a parametric ReLU
(PReLU) activation function. The padding of the convolution
layers is set to keep the causality of the whole system.

3.2. Collaboration Module

Our work presents a crucial idea that target positive and neg-
ative information is valuable for AEC to distinguish between
target and interference signals. But using these two types of in-
formation indiscriminately may result in passive effects. There-
fore, we propose a collaborative module (CM) to model and
combine target positive and negative features to obtain more
discriminative information for AEC. Note that this combination
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Figure 2: The structure of feature catcher (FC) block

is not a simple series or parallel connection but is learnable and
self-adaptive.

The proposed CM consists of three parts: target positive
block, target negative block, and interactive block. As demon-
strated in Figure1(b), given input features Fin, a 2D convolu-
tional block is applied to produce the feature map Mtp, in which
the region of target positive features are highlighted, and can be
expressed as the following:

Mtp = Sigmoid (Conv (ReLU (Conv (Fin)))) (5)

After that, we feed Fin and Mtp into a feature catcher (FC)
block, which is designed for capturing local information from
global-level features to extract target positive features Ftp. We
utilize one minus Mtp to obtain the feature map Mtn for tar-
get negative features. Similarly, we feed Fin and Mtn into a
FC block to extract target negative features Ftn. Inspired Li et
al.[20], the interactive block is proposed to adaptively integrate
Ftp and Ftn. In detail, we first merge Ftp and Ftn from two
branches through an element-wise addition. Next, mean pool-
ing is utilized to generate global features that guide the adaptive
selection between target positive and negative features. After
that, two gate recurrent units (GRU) are used to generate two
weight vectors wtp and wtn for channel-wise selection between
two features. wtp and wtn are content-aware, hence learnable
and self-adaptive. The interactive block can be expressed as the
following steps, G1 and G2 denote two independent GRUs:





Fgf = MeanPool (Ftn + Ftp)
wtp, wtn = softmax

([
G1 (Fgf ) ,G2 (Fgf )

])

Fout = Wtp × Ftp +Wtn × Ftn

(6)

Inspired by Xu et al.[21], we propose a FC block to capture
speech information in global-level and local-level. As shown
in Figure2, we divide the process of computing FC block into
two parts: global-dependency and local-dependency. We first
capture global dependency by self-attention mechanism. After-
ward, we capture the local dependency with the help of global-
level features. In global-dependency part, given an input fea-
ture Fin, two 2-D convolutional layers are adopted to generate
new feature maps, K and V. The global-dependency part fol-
lows the non-local operation[22] to compute responses based
on relationships between different TF units of the spectrogram.
Consequently, the non-local attention map X can be efficiently
calculated by dot product:

X = softmax
(
KV⊤

)
(7)

The output of global-dependency part G is defined as:

G = VX⊤ (8)

Previously, we extracted feature map Mtp at the local level us-
ing a convolutional layer with restricted receptive field, which
make network pay more attention to target positive features. In
local-dependency part, the output of global dependency part G
and the feature map after the local process Q are treated as the
inputs.

Y = softmax
(
QG⊤

)
(9)

Finally, the output of local-dependency part is computed by the
metrics multiplication between G and Y.

3.3. Training objectives

We utilize SI-SNR [23] as our loss function:

starget =
< ŝ, s > s

||s||2 (10)

enoise = ŝ− starget (11)

LSISNR = 10 log10
||starget||2
||enoise||2

(12)

where s and ŝ are the clean and estimated time-domain wave-
form, respectively. < , >denotes the dot product between two
vectors and ∥.∥2 is L2 norm.

4. Experimental setup
4.1. Dataset

Our model is trained with 9500 synthetic files from the
database provided by Microsoft for the ICASSP 2022 AEC
Challenge[24] that is an open speech corpus. Besides, we also
have performed data expansion.

For data expansion, we first prepare four types of signals:
near-end speech, background noise, far-end signal and corre-
sponding echo signal. For near-end speech s(n), there are
10,000 near-end speech utterances in the 2022 official synthetic
dataset and we select the first 500 utterances as the test set which
is unseen in training. The rest 9,500 utterances, together with
10,000 utterances from 2021 ICASSP AEC-challenge synthetic
dataset are used for training. For background noise v(n), we
randomly select 5000 pieces of noise audio from the DNS[25]
dataset for training and 1000 pieces of noise audio for test-
ing. For far-end signal x(n) and echo signal d(n), the first 500
sentences of the 2022 official synthetic dataset are used as the
test set and the rest 9,500 utterances for training. In addition,
we also use the real far-end single-talk utterances provided by
the 2021 and 2022 AEC challenge, which covers a variety of
recording devices and signal time delay. And then we combine
these four signals together to get microphone signal.

4.2. Implementation details

All audio signals are resampled to 16kHz. The chunk size of
our training data is set to 10s. The proposed model uses STFT
to extract the spectrum from each utterance. A Hamming win-
dow with 512 bins and overlap interval of 256 bins is used. Our
model is trained with the Adam optimizer with an initial learn-
ing rate of 1e-3. For CM, The filter sizes and strides of convo-
lutional layer in the Conv Block of CM are (3, 7) and (1, 1), and
in the FC of CM, they are (1, 1) and (1, 1) in time and frequency
dimension. We use masks for self-attention and set the GRU to
unidirectional in FC to avoid involving future information. The
number of hidden units in GRU is 1. The whole parameters of
CMNet are 2.5M.
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Table 1: Ablation experiments. Signal-to-echo ratio(SER) is randomly picked up from [−15, 15]dB. DT: doubletalk, ST: single-talk,
NE: near-end, FE: far-end, TPB: target positive block, TNB: target negative block, IB: interactive block, SNR: signal-to-noise ratio,
”-”: without additional noise.

DT ST NE ST FE
SNR(in dB) - 5 5 -

CASE TPB TNB IB PESQ STOI PESE STOI PESQ STOI ERLE
1 ✓ ✓ ✓ 1.96 0.88 1.80 0.86 2.06 0.91 34
2 ✓ × × 1.94 0.88 1.69 0.84 2.01 0.89 32
3 × ✓ × 1.90 0.88 1.65 0.84 1.94 0.89 34
4 ✓ ✓ × 1.90 0.88 1.68 0.85 2.00 0.90 21
5 × × × 1.87 0.87 1.65 0.82 2.03 0.84 23

4.3. Evaluation metrics

The following three metrics are used to evaluate our model and
state-of-the-art competitors. All metrics are better if higher.
• PESQ: Perceptual evaluation of speech quality (from −0.5 to

4.5) [26].
• STOI: Short-time objective intelligibility measure (from 0 to

1) [27].
• ERLE: Echo return loss enhancement for far-end single-talk

periods [28], which is defined as:

ERLE = 10 log10

[∑

n

y2(n)/
∑

n

ŝ2(n)

]
(13)

PESQ and STOI are used for double-talk and near-end single-
talk scenarios and ERLE used for far-end single-talk.

5. Results and analysis
We demonstrate the ablation study in Table1 to investigate the
effect of different components in CMNet. Note that Case 1 de-
notes the basic CMNet with the default setting. In the ablation
study, we compare our method with several baseline models:
Case 2, we only keep target positive block of CM. Case 3, we
only keep target negative block of CM. Case 4, we remove in-
teractive block in CM. Case 5, we remove whole CM and add
self-attention layers to keep the number of parameters roughly
constant. A detailed analysis of the ablation study is presented
below.

Table 2: Echo cancellation performance. SNR is randomly
picked up from 5dB or without additional noise in DT and is
set to 5dB in NE ST. The DT scenario randomly picks SER from
[-15,15]dB.

DT ST NE ST FE
Method #Params(M) PESQ STOI PESQ STOI ERLE

CRN 4 1.53 0.83 1.71 0.88 23
F-T-LSTM 1.2 1.67 0.85 1.82 0.89 23

MTFAA 2.1 1.79 0.88 2.00 0.91 25
two-branch 4.8 1.74 0.87 1.97 0.90 28

CMNet 2.5 1.88 0.88 2.06 0.91 34

To verify the effect of target negative information, we make
the comparison between Case 1 and Case 2. 0.02 STOI gains
and 0.11 PESQ gains by Case 1 over Case 2 at a signal-to-noise
ratio of 5 dB show the superiority of the use of target negative,
especially in a noisy environment. In Case 3, we only apply tar-
get negative block. The performance comparison between Case
3 and Case 5 indicates the necessity of involving target negative
features for the AEC model. Interestingly, comparing Case 2
with Case 3, we observe that CMNet with only target positive
blocks performs slightly better than with only target negative

blocks. Figure3 shows the attention feature maps of target pos-
itive and target negative blocks. From (a) and (b), we observe
that target positive and target negative blocks behave differently
in CM. This is reasonable as the two blocks model different
features and their focus differs. And in some indistinguishable
patterns between speech and interference signals, the weights
in the feature map may be about 0.5, so the feature maps are
similar. In Case 4, we only remove interactive block. The per-
formance comparison between Case 1 and Case 4 suggests the
importance of feature fusion in a learnable and adaptive manner.

(b) Target Negative Block (a) Target Positive Block

Figure 3: Visualization of attention feature map from different
FC blocks. (a) target positive block. (b) target negative block.

We compare our CMNet with three other methods, CRN[8],
F-T-LSTM[29], and MTFAA[30] trained with our dateset. CRN
is a causal convolutional recurrent network for complex spectral
mapping. F-T-LSTM adopts an AEC approach using a com-
plex neural network to better model the important phase infor-
mation and frequency-time-LSTMs, which scan both frequency
and time axis, for better temporal modeling. MTFAA is a sys-
tem that presents a novel backbone for speech dense-prediction
called a multi-scale temporal frequency convolutional network
with axial self-attention. Table2 shows the comparison results
in terms of STOI and PESQ. We highlight the best score under
each condition in boldface. Besides, based on our network, a
two-branch network is constructed by mimicking the structure
in [16], which further validates that our model can achieve bet-
ter results with fewer parameters.

6. Conclusions
In this paper, we observe that both the target positive informa-
tion and the target negative information, such as interference
signals and features, are valuable in guiding the AEC model
training procedure. Therefore, we propose a novel AEC method
termed CMNet, encoder-decoder architecture with a collabora-
tion module (CM) inserted. The CM is used to establish the
correlation between the target positive and negative information
at the global and local levels in a learnable and self-adaptive
manner. Experimental results demonstrate that the guidance of
both positive and negative information can improve AEC per-
formance.
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