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Abstract
Large-scale pre-trained language models (PLMs) have shown
great potential in natural language processing tasks. Lever-
aging the capabilities of PLMs to enhance automatic speech
recognition (ASR) systems has also emerged as a promising re-
search direction. However, previous works may be limited by
the inflexible structures of PLMs and the insufficient utiliza-
tion of PLMs. To alleviate these problems, we propose the
hierarchical knowledge distillation (HKD) on the continuous
integrate-and-fire (CIF) based ASR models. To transfer knowl-
edge from PLMs to the ASR models, HKD employs cross-
modal knowledge distillation with contrastive loss at the acous-
tic level and knowledge distillation with regression loss at the
linguistic level. Compared with the original CIF-based model,
our method achieves 15% and 9% relative error rate reduction
on the AISHELL-1 and LibriSpeech datasets, respectively.
Index Terms: continuous integrate-and-fire, knowledge distil-
lation, contrastive learning, pre-trained language models

1. Introduction
End-to-end (E2E) models have recently made remarkable
progress on automatic speech recognition (ASR) tasks. Com-
pared with hybrid models, E2E models are optimized in a uni-
fied structure. However, the tight integration in this unified
structure hinders the infusion of linguistic knowledge and limits
the use of large-scale textual corpora.

Currently, there are two popular approaches widely used to
leverage unpaired text for E2E ASR models: language model
(LM) fusion [1–4] and re-scoring [5]. Apart from them, uti-
lizing large-scale pre-trained language models (PLMs) to im-
prove language modeling of ASR models [6, 7] is also a practi-
cal approach to make use of unpaired text dataset. PLMs pos-
sess powerful language modeling abilities, and their outputs
contain rich linguistic information that can improve ASR lan-
guage modeling [6, 8]. Therefore, employing PLMs to improve
speech recognition has gradually become an important research
direction. Until now, the methods used to improve ASR with
PLMs can be categorized into three classes: re-scorer based
method, model-based method, and knowledge distillation based
method. The re-scorer based methods [9–13] convert PLMs
into re-scorers and use them to re-score the N -best lists or lat-
tices from the first-pass decoding, while not changing the ASR
model. Unlike the re-scorer based method, the model-based
method and KD-based method focus on improving the ASR
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model itself. The model-based method refers to using PLM as
part of the ASR model. For example, Huang et al. [7] fine-tune
PLM as an ASR model with acoustics as cues. Yi et al. [14] use
the CIF mechanism [15] to combine pre-trained acoustic and
language models in a unified structure. Following [14], Zheng
et al. [16] and Deng et al. [17] integrate pre-trained acoustic and
language models for low-resource ASR and non-autoregressive
(NAR) ASR, respectively. However, directly deploying model-
based methods may be challenging due to the large size and
different structures of PLMs. The KD-based methods transfer
knowledge from PLMs to ASR models via knowledge distilla-
tion [18]. Futami et al. [6] distill knowledge from the BERT
output distribution to the output distribution of the ASR model.
Unlike the probability-based KD, the representation-based KD,
which optimizes the similarity between teacher and student rep-
resentations, transfers knowledge from PLMs to NAR ASR
models [19]. Furthermore, the representation-based KD is ap-
plied to various ASR models [8, 20]. However, most KD-based
methods transfer the knowledge to only one of acoustics or lin-
guistics and thus cannot fully leverage PLMs.

In this paper, to explore effective schemes of using PLMs
in ASR, we propose a knowledge transfer strategy called hierar-
chical knowledge distillation (HKD). HKD transfers linguistic
knowledge from PLMs to different levels of the ASR model,
including the acoustic level. However, it is not easy to directly
transfer linguistic knowledge to the acoustic level of E2E mod-
els. Unlike other E2E schemes, the continuous integrate-and-
fire mechanism (CIF) [15], which generates token-level acous-
tic representations aligned with the text, provides a natural op-
tion for the KD at the acoustic level. Thus, we develop the HKD
based on the CIF-based ASR model. Inspired by contrastive
knowledge distillation (CKD) [21, 22], we leverage contrastive
loss to transfer the knowledge to the high-level acoustics of
CIF-based ASR models. By pushing positive pairs together and
negative pairs apart, the contrastive loss encourages the model
to capture semantic alignment, giving CKD an advantage over
losses that optimize similarity when distilling knowledge across
different modalities and structures. At the linguistic level, we
apply regression loss to transfer knowledge from the PLM to the
linguistic representations. Unlike model-based methods, HKD
does not require adapting the ASR model for PLMs. Compared
with other representation-based KD methods, HKD transfers
the knowledge into the ASR model at multiple levels and ap-
plies contrastive distillation to effectively bridge the semantic
gap between acoustics and linguistics. Experiments show that
HKD achieves 15% and 9% relative error rate reduction over
the original CIF-based model on AISHELL-1 and LibriSpeech,
respectively. The implementation is available on GitHub1.

1https://github.com/MingLunHan/CIF-HieraDist
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Figure 1: The CIF-based ASR model.

2. Proposed method

2.1. Preliminaries

2.1.1. Continuous Integrate-and-Fire based ASR model

Continuous Integrate-and-Fire (CIF) [15], a soft monotonic
alignment mechanism, has been successfully applied to vari-
ous ASR tasks [23, 24]. As shown in Figure 1, the CIF-based
ASR model in this work consists of an acoustic encoder, a CIF
module, and a decoder. The acoustic encoder has a convolu-
tion front-end, and a conformer [25] module. The CIF module
has a 1-dimensional convolution layer and a fully-connected
(FC) layer. The decoder, composed of FC layers and a trans-
former [26] module, is an autoregressive decoder.

The input feature sequence X = (x1, ...,xt, ...,xT ) is
first fed to the convolution front-end of the encoder. Then,
the conformer module takes the outputs of the convolution
front-end as inputs and outputs low-level acoustic sequence
H = (h1, ...,hu, ...,hU ). Note that the convolution front-end
down-samples the inputs by 2, and the conformer module down-
samples the inputs by 4 with two max-pooling layers. Next, H
is delivered to the CIF module. In the CIF module, H are first
passed through the 1-dimensional convolution layer, and then
one FC layer with one output unit and a followed sigmoid ac-
tivation is used to generate weights a = (a1, ..., au, ..., aU )
from outputs of the convolution layer. After that, The CIF mod-
ule accumulates the weight au along the time axis. When the
accumulated weight exceeds a threshold β, a firing represent-
ing the acoustic boundary between adjacent tokens occurs. The
weight of the firing time-step will be split into two parts: 1) the
first part is used for the weight accumulation of the token be-
fore the boundary to make its accumulated weight reach β; 2)
the second part is left for the accumulation of the token after
the boundary. Further, the CIF module summarizes hu between
adjacent acoustic boundaries via weighted sum with generated
weights as weighting factors, and outputs high-level acoustic se-
quence C = (c1, ..., ci, ..., cI). Finally, the decoder takes the
high-level acoustic sequence C = (c1, ..., ci, ..., cI) as inputs,
and gives the final linguistic sequence S = (s1, ..., si, ..., sI).
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Figure 2: Hierarchical knowledge distillation. LRD denotes lin-
guistic regression distillation, and ACD denotes acoustic con-
trastive distillation. P denotes projection, and N denotes L2
normalization.

2.1.2. Large-scale pre-trained language models

PLMs trained on large-scale datasets, such as BERT [27] and
GPT-2 [28], have been widely used in natural language pro-
cessing tasks. PLMs possess strong modeling power and con-
tain rich linguistic information, which is helpful to compensate
for the language modeling of the ASR model. This work fo-
cuses on transferring knowledge from BERT-like PLM teach-
ers to ASR students via knowledge distillation. Given text se-
quence (T1, ..., Ti, ..., TI−1,<EOS>) with length I , the input
for PLMs is ([CLS], T1, ..., Ti, ..., TI−1,[SEP]) with length
(I + 1). As shown in Figure 2, to keep the strict align-
ment between the student ASR outputs and teacher PLM out-
puts, we ignore the PLM output corresponding to [CLS].
The final output sequence of teacher PLM is denoted as E =
(e1, e2, ..., ei, ..., eI).

2.2. Hierarchical knowledge distillation

We propose hierarchical knowledge distillation (HKD) that
transfers the knowledge from PLM to the CIF-based ASR
model, as shown in Figure 2. “Hierarchical” 1) describes the
bottom-up ASR hierarchy: speech input is first transformed to
low-level acoustic features H, and then transformed to high-
level acoustic features C, and finally transformed to linguistic
representations S, and 2) describes the behavior of distillations
that simultaneously happen at the acoustic level C and higher
linguistic level S. Such hierarchical distillation might better
utilize the PLMs to enhance different aspects of ASR. The total
loss of the ASR model with HKD is the sum of 1) ASR loss and
2) multi-level distillation losses. The total loss is written as

LTotal = LASR + λAD · LAD + λLD · LLD (1)

where LASR is the ASR loss of the CIF-based model [15]. LAD

and LLD are acoustic distillation (AD) loss and linguistic dis-
tillation (LD) loss, respectively. λ denotes the loss weight.

2.2.1. Acoustic contrastive distillation

Considering that the CIF acoustic sequence C is strictly aligned
with the text sequence during training [15], we can transfer the
knowledge from PLMs to these high-level acoustic representa-
tions. However, there are two potential obstacles in this dis-
tillation process: 1) modal gap: although the CIF output C
is aligned with text sequence, it is still closer to the acoustics
(without linguistic contextual modeling); 2) structure gap: the
acoustic encoder of the CIF-based model, which uses conformer
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structure and a weight accumulation mechanism, usually dif-
fers from the transformer structures of PLMs. Inspired by con-
trastive distillation [22], we use contrastive loss for knowledge
distillation across different modalities and structures. Com-
pared with distillation losses that directly optimize the similar-
ity metrics, contrastive loss forces the model to pull together
the positive pairs and push apart the negative pairs. Thus, the
model can capture the high-level semantic alignment between
student and teacher, and better model semantics. More specif-
ically, we use contrastive loss (based on InfoNCE [29]) as the
objective function for acoustic contrastive distillation (ACD).
We project original student outputs in C to match the dimen-
sion of teacher output representation, and then normalize them.
We denote the projected student outputs, final student out-
puts, and final teacher outputs as Ĉ = (ĉ1, ĉ2, ..., ĉi, ..., ĉI),
C̄ = (c̄1, c̄2, ..., c̄i, ..., c̄I) and Ē = (ē1, ē2, ..., ēi, ..., ēI), re-
spectively. The contrastive loss is defined as

Lcont
AD = − 1

N

N∑

n=1

1

In

In∑

i=1

log
s(c̄i, ēi)∑K

k=1 s(c̄i, ē
−
n,i,k) + s(c̄i, ēi)

,

(2)
where s(x,y) is equal to exp(⟨x,y⟩/τ), and ⟨x,y⟩ denotes
the inner-product of x and y. N and In denote the batch size
and the text length of the n-th audio sample, respectively. τ and
K denote the temperature and the number of negative samples
for contrastive loss. c̄i represent the i-th student token query of
the n-th sample. ēi represents the positive teacher token rep-
resentation that matches c̄i. ē−

n,i,k represents the k-th negative
teacher token representation sampled from all teacher token rep-
resentations (except the positive one) of the current batch.

Apart from the contrastive loss, we also try to conduct dis-
tillation with the mean square error (MSE) loss or the cosine
embedding (COS) loss for comparison. They can be written as

Lmse
AD = αmse · 1

N

N∑

n=1

1

In

In∑

i=1

D∑

d=1

(ĉni,d − eni,d)
2, (3)

Lcos
AD = αcos · 1

N

N∑

n=1

1

In

In∑

i=1

(1− cosine(ĉi, ei)), (4)

where D is the dimension of teacher representations. Coeffi-
cients αmse and αcos scale losses to achieve the balance.

2.2.2. Linguistic regression distillation

We use regression loss to distill the knowledge from PLMs to
the final linguistic representations of the CIF-based model. Us-
ing regression loss to transfer the knowledge to ASR models has
been proven effective [19]. However, it is still uncertain whether
this method works for the CIF-based ASR models. Specifically,
we use MSE loss as the objective function for linguistic regres-
sion distillation (LRD). Given the projected final state of the
decoder Ŝ = (ŝ1, ŝ2, ..., ŝi, ..., ŝI) as student outputs and the
PLM outputs E as teacher outputs, MSE loss can be defined as

Lmse
LD = αmse · 1

N

N∑

n=1

1

In

In∑

i=1

D∑

d=1

(ŝni,d − eni,d)
2. (5)

3. Experimental setup
3.1. Datasets and metrics

We evaluate our method on a Mandarin Chinese dataset
AISHELL-1 [30] and an English dataset LibriSpeech [31]. We

extract 80-channel filterbank features computed from a 25ms
window with a stride of 10ms. For AISHELL-1, the output
vocabulary contains 4230 characters and four special tokens
<PAD>, <EOS>, <BOS>, <UNK>. For LibriSpeech, because
PLM and the English ASR model use different output vocab-
ularies, we directly use the vocabulary of PLM for the ASR
model for the convenience of distillation. We use the character
error rate (CER) and word error rate (WER) to measure ASR
performance for Chinese and English, respectively.

3.2. Configurations

For Chinese, the encoder of the ASR model consists of a con-
volution front-end and a conformer module. The convolu-
tion front-end is a 2-dimensional convolution layer with out-
put channels 128, kernel size 3, and strides 2. The conformer
module consists of 15 conformer blocks with dmodel = 256,
dffn = 2048 and h = 4, kernel size 15 (for depth-wise con-
volution), and 2 max-pooling layers after the 5th and the 10th
blocks. The CIF module contains a 1-dimensional convolu-
tion layer with output channels 256, kernel size 3 and strides
1, and an FC layer followed by the sigmoid activation. The
decoder consists of several FC layers and a transformer mod-
ule, which consists of 2 transformer blocks with dmodel = 256,
dffn = 2048, and h = 4. For English, the hidden size and
the number of attention heads are set to 512 and 8, respectively.
The number of output channels of the convolution layer in the
CIF module is 512.

During training, we apply dropout for conformer blocks
(0.1), transformer blocks (0.2), and the convolution layer (0.2)
in the CIF module. In addition, we apply SpecAugment [32]
with F = 27, mF = 2, T = 50, mT = 2 and p = 1.0. We
apply label smoothing with ϵ = 0.1. We train the models with
the Adam optimizer [33] with β1 = 0.9, β2 = 0.98, lr = 3e-4
and a weight decay of 0.01. The weights of cross-entropy loss,
connectionist temporal classification loss, and quantity loss are
set to 1.0, 0.5 and 1.0, respectively. The threshold β of the
CIF mechanism is 1.0. The scaling strategy and tail handling
in [15] are applied. The weights of distillation losses are tuned
on the dev set and chosen from {0.01, 0.1, 0.2, 0.5, 1.0}. αmse

and αcos are set to 0.01 and 10, respectively. The PLMs used
for distillation are bert-base-chinese2 for Chinese and bert-base-
uncased3 for English. Note that all PLMs are fixed during train-
ing. During inference, we use beam search with beam size 10.
For Chinese, we use a 16-layer Transformer LM (trained with
the text of all training data) via shallow fusion [1] with the in-
terpolation weight tuned on the dev set.

4. Results
4.1. Results on AISHELL-1

The experiments are conducted on the AISHELL-1 dataset. As
depicted in Table 1, we first compare the CIF-based ASR model
with models in other literature. With comparable model pa-
rameters, the CIF-based ASR model achieves comparable per-
formance to the ESPnet conformer [34], with or without LM.
Then, we use the CIF-based ASR model with LM as the base-
line to evaluate the effectiveness of our method. We experiment
with three settings: ACD only, LRD only, and HKD which com-
bines ACD and LRD. The results reported in the last three rows
show that ACD, LRD, and HKD achieve about 4%, 8%, and

2https://huggingface.co/bert-base-chinese
3https://huggingface.co/bert-base-uncased
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Table 1: Main results on AISHELL-1 (CER %).

Model LM # Param dev (%) test (%)

ESPnet Conformer [34] % 46 M 4.5 4.9
ESPnet Conformer [34] ! 46 M 4.4 4.7
Branchformer [35] % 45 M 4.2 4.4
WeNet [36] ! 46 M - 4.4
Icefall ! - - 4.3
Neural Transducer [37] ! 90 M 3.8 4.1

CIF % 47 M 4.5 4.9
+ ACD % 47 M 4.2 4.7
+ LRD % 47 M 4.0 4.5
+ HKD % 47 M 3.8 4.2

CIF ! 47 M 4.4 4.8
+ ACD ! 47 M 4.2 4.6
+ LRD ! 47 M 4.0 4.4
+ HKD ! 47 M 3.8 4.1

Table 2: Comparison between contrastive loss and other dis-
tillation losses (CER %). AD represents acoustic distillation.
MSE, COS, and CONT represent mean square error loss, co-
sine embedding loss, and contrastive loss, respectively.

Model LRD AD AD Loss
w/o LM w/ LM

dev / test dev / test

CIF

% % - 4.5 / 4.9 4.4 / 4.8
% ! MSE 4.4 / 4.9 4.4 / 4.8
% ! COS 4.5 / 4.9 4.4 / 4.8
% ! CONT 4.2 / 4.7 4.2 / 4.6

! % - 4.0 / 4.5 4.0 / 4.4
! ! MSE 4.0 / 4.5 4.0 / 4.5
! ! COS 4.1 / 4.5 4.0 / 4.4
! ! CONT 3.8 / 4.2 3.8 / 4.1

15% relative error rate reduction, respectively. With the help of
PLMs, the CIF-based model achieves comparable performance
with the strong baseline [37]. We can conclude that 1) both
ACD and LRD can improve ASR performance; 2) HKD could
further enhance the ASR model, which proves the complemen-
tary nature of LRD and ACD. Note that our method brings no
additional inference cost.

We compare the contrastive loss with other losses that op-
timize the similarity metrics directly. We conduct experiments
under two settings: a CIF-based ASR baseline and a CIF-based
ASR baseline with LRD. As shown in Table 2, the contrastive
loss outperforms MSE loss and COS loss. This result may result
from the fact that contrastive loss encourages the model to learn
semantic alignments rather than strictly optimize the similarity
metrics. Thus, the contrastive loss can perform better under the
cross-modal distillation settings. The weight of MSE loss is set
to 1.0. The weight of COS loss is set to 0.2. The weight of
contrastive loss, the temperature τ , and the number of negative
samples K are set to 1.0, 0.02, and 700, respectively.

We explore the effects of τ and K on ACD with a CIF-
based ASR model and a CIF-based ASR model with LRD. Fig-
ure 3 shows the trend of CER as the temperature increases. Ob-
viously, increasing τ leads to degradation. With τ chosen from
{0.01, 0.02, 0.05}, ACD make CER fluctuate around 4.2% and
provide stable improvements. We set τ to 0.02 to report the best
results. Figure 3 shows the trend of CER as K increases. Gen-
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Figure 3: Effects of the temperature and the number of negative
samples.

Table 3: Main results on LibriSpeech (WER %).

Model dev
clean

dev
other

test
clean

test
other

CIF 3.0 7.3 3.3 7.7
+ ACD 3.0 7.2 3.2 7.3
+ LRD 2.8 6.9 3.1 7.1
+ HKD 2.7 6.9 3.0 7.0

erally speaking, more negative samples will lead to better per-
formance. We report the best results with K = 700. When K
is chosen from {100, 200, 300, 400, 500, 600}, the ASR model
with HKD almost achieves comparable performances (around
4.2%). However, when we remove LRD, a severe deterioration
occurs for settings with small K, which implies that LRD helps
to stabilize the training of ACD. Since increasing K leads to
more training memory cost, it is necessary to choose a compro-
mised K to achieve comparable performance in practical usage.

4.2. Results on LibriSpeech

As shown in Table 3, our methods consistently improve perfor-
mance on dev sets and test sets, which demonstrates the effi-
cacy of our methods on the English dataset. Using ACD and
LRD simultaneously, we can achieve a relative WER reduction
of 9% on both test-clean and test-other. Our methods yield a
lower relative performance gain on the English dataset than on
the Chinese dataset. We hypothesize that the difference in the
property of output modeling units may result in this discrep-
ancy. In contrast to the Chinese modeling units (characters), the
English modeling units (especially some intra-word subwords)
may lack clear acoustic boundaries. Therefore, it is difficult
for English to learn a proper cross-modal alignment between
acoustics and linguistics via contrastive knowledge distillation.

5. Conclusion

In this work, we introduce a hierarchical knowledge distilla-
tion strategy to transfer PLM knowledge to different levels of
the CIF-based ASR model. Specifically, we use acoustic con-
trastive distillation at the acoustic level and linguistic regres-
sion distillation at the linguistic level. Compared to the CIF-
based ASR baseline, our method brings 15% relative CER re-
duction on AISHELL-1 and 9% relative WER reduction on Lib-
riSpeech. We will explore our methods with larger-scale lan-
guage models in the future.
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