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Abstract
An implicit assumption when using the discrete Fourier trans-
form for spectrum estimation is that the time signal is peri-
odic. This assumption clashes with the quasi-periodicity of
voiced speech when the traditional short-time Fourier transform
(STFT) is applied to it. This causes distortion and leads to a per-
formance handicap in downstream processing. This work pro-
poses a remedy to this by using epochs in the signal to determine
better frame boundaries for the Fourier transform. The epochs
are the estimated glottal closure instants in voiced speech and
significant peaks in the unvoiced speech signal. The result-
ing coefficients are compared to the traditional STFT coeffi-
cients using copy-synthesis. An improvement of 15 dB signal-
to-noise ratio and a PESQ score of 2.5 to 3.5 is achieved for
copy-synthesis using 20 mel-filters. The results demonstrate
that there is a great potential in improving down stream speech
processing applications using this approach to spectrum estima-
tion.
Index Terms: speech signal processing, Fourier analysis, copy-
synthesis, vocoding.

1. Introduction
Spectrum estimation is fundamental to speech processing and
has been described in textbooks for decades [1, 2]. These
textbooks typically describe the short term Fourier analysis of
speech in terms of fixed time frames formed as a product of the
(long) speech signal and a (typically rectangular) window func-
tion (see, for example [1, Ch. 6]) and [2, Ch. 4]). Common
speech signal processing toolboxes such as Voicebox and Li-
brosa [3, 4] implement the short-time Fourier transform (STFT)
and mel-frequency cepstrum coefficient (MFCC) extraction ac-
cording to the fixed frame approach where the frame size is kept
constant while the frame is shifted in equal hops along the sig-
nal. This method has certain benefits as it is simple and easy to
implement with no prior signal processing that is specific to the
frame boundary determination required.

A problem with this approach, however, is that it ignores
the implicit periodicity assumption of the discrete Fourier trans-
form (DFT). An analysis frame that has a fixed duration will
normally contain a non-integer number of fundamental periods
in the voiced speech signal. As an example, an analysis frame
of 25ms containing voiced speech with a period of 10ms will
contain 2.5 periods. This fractional period will distort the DFT
coefficients as they will sample the continuous discrete-time
Fourier transform (DTFT) of an infinitely long signal that re-
peats with a period of 25ms. The DFT phase will also be hard
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Figure 1: The upper panel shows a 0.5 s sample of synthetic
speech whose pitch equals 100Hz for the first 0.2 s before ris-
ing linearly to 190Hz. The next two panels show wideband and
narrowband spectrograms which use fixed analysis windows of
6ms and 25ms respectively. The lower panel shows a spec-
trogram that uses an adaptive analysis window whose length
equals the estimated pitch period.

to interpret since the analysis frame has an arbitrary and variable
time-shift with respect to the signal. This has been a serious ob-
stacle in using phase information in speech processing [5].

This problem is illustrated in Fig. 1 with spectrograms of
a synthetic speech segment. The segment is generated using
Liljencrants-Fant source parameters [6, 3] and a time-invariant
auto-regressive filter derived from a real speech segment. The
pitch of the source is constant at 100Hz for the first 0.2 s and
then increases linearly to 190Hz. The first spectrogram, which
uses 6ms fixed analysis frames, varies with time since the anal-
ysis frames are shorter than the pitch periods. In an attempt to
remedy this, the analysis frame is increased to 25ms in the sec-
ond spectrogram ensuring that more than one pitch period is in-
cluded in each frame. The vertical stripes visible in this spectro-
gram show, however, that the Fourier coefficients change from
one frame to the next even during first 0.2 s when the signal is
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exactly periodic.
This work proposes an alternative way of determining the

analysis frame boundaries for the STFT. For voiced speech the
analysis frame captures a single fundamental pitch period in
a speech signal by calculating the frame boundaries based on
glottal closure instants (GCIs) [7]. For clean speech, GCIs can
be accurately identified from, for example, discontinuities in de-
rived signals such as the mean-based signal or the multi-scalar
product [8, 9]. For unvoiced speech, the analysis frames are cal-
culated similarly, albeit without the periodicity interpretation in
the voiced speech. These time frames are however synchronised
with respect to epochs that represent an underlying time struc-
ture in the unvoiced speech. Fig. 1 demonstrates the effective-
ness of this approach where the third spectrogram demonstrates
how little the discrete Fourier coefficients vary over the synthe-
sized segment. Here, the Fourier coefficients and the frame du-
ration vary consistently from one frame to the next and encode
all the information needed for perfect reconstruction.

A brief overview of related work is given below before the
proposed approach is described in Sec. 2. Section 3 describes
a copy-synthesis method that is used to compare the proposed
approached with traditional STFT of speech and the results of
these experiments are presented and discussed in Sec. 4. The
implications of the approach and the results are presented and
the work concluded in Sec. 5.

1.1. Related work

Detection of GCIs has been of great interest to researchers [10,
7]. Much focus has been on developing accurate detectors
evaluated on ground-truth data derived from the electroglot-
togram [9, 11] but they have also been used for glottal inverse
filtering [12, 13, 14], voice quality assessment [15], cognitive
workload monitoring [16], artificial bandwidth extension [17]
and speaker identification [18]. Most of the applications revolve
around improving the computation of linear prediction coeffi-
cients by achieving closed-phase analysis or weighted covari-
ance estimation [19] by knowing the location of the closures.
This line of development leads to an improved modern spec-
trum estimation, but GCIs have to the best of our knowledge,
never been directly used to estimate Fourier coefficients.

The importance of pitch-synchronous speech processing
has been known for a long time within the speech synthesis
community. Pitch synchronous overlap add (PSOLA) was used
to improve concatenate diphone [20] and unit selection [21]
synthesis with the latter displaying an early GCI detection ver-
sion using the group-delay [22]. The importance of pitch syn-
chrony was also demonstrated [23] with the importance of
avoiding a non-integer number of pitch periods in the analysis
windows when estimating linear prediction parameters. This
method was developed into the STRAIGHT [24] vocoder and
widely used in statistical parametric speech synthesis. Other ap-
proaches to vocoding that also recognise the importance of es-
timating parameters over an integer number of pitch periods in-
clude the Harmonic plus Noise Model (HNP) vocoder [25], the
Vocaine vocoder [26] and Magnitude and Phase Spectra (Mag-
Phase) vocoder [27].

In recent years, the main attention of TTS research has co-
alesced around neural-vocoding [28, 29] while spectral based
vocoding seems to have been abandoned. The early version of
Tacotron [30], for example, used mel-filter energies for vocod-
ing and used the Griffin-Lim algorithm for resynthesis [31].
With better spectrograms, there might not have been the need
to move away from this kind of vocoding.
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Figure 2: The epochs extracted from three different speech
segments. The epochs are the GCIs during voiced segments
whereas they correspond to discontinuities in the speech dur-
ing unvoiced and short-pause segments.

2. Epoch-Based Spectrum
2.1. Epochs

Epochs are glottal closure instants (GCIs) in voiced speech
and time instants that correspond to discontinuities in unvoiced
speech. They are extracted using the Yet Another GCI Algo-
rithm (YAGA) [9]. The algorithm also returns epochs during
non voiced segments (i.e. unvoiced and silence). These epochs
may have some significance as they represent interesting time
instants that correspond to discontinuities in the inverse-filtered
speech signal. Fig. 2 shows epochs extracted during a voiced, an
unvoiced, and a short-pause segment of speech. Pseudo-epochs
are introduced if the gap between consecutive extracted epochs
exceeds 25ms; this corresponds to a 40Hz pitch period which
is therefore the lowest pitch that the algorithm recognises. A
gap larger than 25ms arises where no interesting time instants
are detected; in this case, enough evenly-spaced pseudo-epochs
are introduced into the gap to reduce the time interval between
consecutive epochs to below 20ms.

Figure 2 shows the three types of epoch that are used in
the work. The first panel shows the epochs that correspond to
GCIs in voiced speech. The second panel shows the epochs ex-
tracted during a fricative where pronounced discontinuities are
picked out by the algorithm. The third panel shows how pseudo-
epochs have been inserted to fill in a gap where no significant
discontinuity has been detected. The epochs are labelled as
i ∈ {1, 2, . . . } using their order of occurrence, irrespective
of their types (voiced, unvoiced, pseudo/silence). The sample
number of the i-th epoch is ni so a speech signal, s(n), sam-
pled at a frequency fs = 16 kHz might have its i = 84-th
epoch occurring at n84 = 8864 when 552.9ms have lapsed of
the signal (this example corresponds to the first GCI in the first
panel of Fig. 2).

2.2. Frame boundaries

Analysis frames which have a meaningful time location are de-
termined from the epochs in the speech signal. The aim of the
encoding step is to create an invertible projection so that the sig-
nal can be decoded with perfect reconstruction. We therefore
use non-overlapping analysis frames with the epochs placed at
a predetermined position within the window. The first sample
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of the frame is therefore,

oi = ni − ⌊pNi⌋ (1)

where Ni = ni − ni−1 is the number of samples between the
epoch and its previous epoch and is the pitch period in samples
during voiced speech. The final sample in the i-th frame is sim-
ply oi+1 − 1 and the design parameter p ∈ [0, 1[ allows us to
control the time shift of the frame with respect to the epochs.
If p = 0, the epochs themselves become the frame boundaries
whereas if p = 0.5 the epochs will be close to the middle of
the frames (so long as Ni ≈ Ni+1). For this work the value of
p = 0.3 is set to avoid having the frame boundaries close to the
epochs and to place the frame boundaries in the open phase of
the glottal cycle which tends to produce low values in the speech
signal. The first panel of Fig. 3 shows a short segment of voiced
speech. The positive stems show the frame boundaries chosen
with this method resulting in frames that are synchronised with
the pitch period. A single fixed frame of 25ms is also shown in
this panel as vertical broken lines. The duration of the frame is
equivalent to three pitch cycles plus approximately 2.5ms that
will distort the Fourier coefficients as described in Sec. 1.

2.3. Adjusted frame boundaries

The DFT of a finite length frame is equivalent to the DTFT of
the infinite periodic signal obtained by concatenating multiple
copies of the frame. Any discontinuities in the value or deriva-
tives of this signal at the frame boundaries will introduce arte-
facts into the spectrum. We therefore adjust the frame bound-
aries by up to ±0.625ms in order to minimize these artefacts.
Dynamic programming is used to determine the adjustment to
each frame boundary that minimizes the mean of the squared
difference between the final samples of consecutive frames. The
effect of this adjustment is illustrated in the first panel of Fig. 3
where the frame boundaries before and after adjustment are
shown by the positive and negative stems respectively. The ad-
justed frame boundaries are denoted as õi and the corresponding
frame duration as Ñi and can be used instead of oi and Ni to
calculate the Fourier coefficients. Although these adjustments
are small, they result in a significant performance improvement
to the copy-synthesis algorithm of Section 3.

2.4. Fourier coefficients

The ith frame now contains Ni samples (or Ñi in the ad-
justed case). An Ni point discrete Fourier transform would
produce coefficients at integer multiples of the fundamental
frequency f0 = fs/Ni. This is the rate at which the vi-
bration of the glottal folds samples the frequency response of
the combined vocal tract and voice source system and repre-
sents a natural limit to frequency resolution in voiced speech.
This limit is side-stepped by padding the frame before tak-
ing the Fourier transform to produce interpolation in the fre-
quency domain. The time signal is padded with the constant
αi =

1
2
(s(oi)− s(oi+1 − 1)) to minimize the discontinuity of

the frame boundaries,

si(m) =

{
s(oi +m) m = 0, 1, . . . , Ni − 1,

αi m = Ni, . . . ,K − 1.
(2)

and the resulting Fourier coefficients are

ci,k = F{si(m)} =

K−1∑

m=0

si(m)e−j2πkm/K , (3)
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Figure 3: One frame of speech analysed. The first panel shows
one fixed-frame of speech demarcated with blue broken vertical
lines, frame boundaries using the epoch-based method (red pos-
itive stems) and adjusted epoch-based method (yellow negative
stems). The lower two panels show the power spectrum and the
unwrapped phase of the three resulting Fourier analyses.

for k ∈ {0, . . . ,K − 1}. The longest period between epochs
was chosen to correspond to 40Hz (so K = 400 samples for
fs =16kHz) giving an apparent frequency resolution of fs/K
(40Hz) but the actual frequency resolution is fs/Ni (e.g. if
Ni = 160 the frequency resolution is f0 =100Hz).

Figure 3 shows the power spectrum and the phase based
on fixed-frame (blue), epoch-based (red, with oi and Ni) and
adjusted epoch-based frames (yellow, with õi and Ñi). The fig-
ure shows that the epoch-based Fourier coefficients produce a
smoother spectrum since the underlying frequency resolution is
coarser, but it also avoids the distortion due to the fractional
glottal period that is included in the fixed-frame analysis. The
phase of the epoch-based Fourier coefficients unwraps seam-
lessly whereas the phase of the fixed-frame analysis does not.
The resulting spectrum for adjusted epochs is also shown for
the synthetic segment in Fig. 1. The last panel demonstrates
well how the proposed method gives consistent Fourier coeffi-
cients in the steady-state portion of the utterance, unlike either
the wide-band or the narrow-band fixed frame methods.

3. Copy-Synthesis Methodology

In Sec. 1 it was argued that an epoch-based spectrum estimation
is preferable to a fixed-frame approach and it was demonstrated
in Sec. 2 that this is the case. Applying the inverse DFT to
either to the epoch-based or the fixed-frame spectra will give
a perfect reconstruction of the time signal. It is, however, a
major objective of many down-stream speech processing algo-
rithms to parameterise the speech signal, so that it can be, for
example, recognised in an ASR system or regressed on to in a
TTS-vocoder setting. It is beyond the scope of this paper to ex-
amine the full effect of the proposed method on such systems,
but in order to get an experimental validation of the approach, a
copy-synthesis system is set up and tested.
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3.1. Mel filter copy-synthesis

A mel-filter bank is applied to the magnitude spectrum in or-
der to parameterise it. The phase is kept the same for the pur-
pose of the experiments avoiding the need to rebuild the phase
using the Griffin-Lim algorithm [31]. This favours the fixed-
frame method, but allows for a targeted assessment of the mag-
nitude spectrum. The mel-filter energies are calculated for the
ith frame using the triangular Mel-filters Mj(k) [32],

Yi,j =

K−1∑

k=0

|ci,k|Mj(k). j = 1, . . . ,M (4)

The number of filters, M , is varied in the experiments but the
typical choice in feature extraction is between 20 and 26 de-
pending on the sampling frequency whereas a choice of 80 is
common in TTS where better frequency resolution is needed.

The magnitude spectra |ĉi,k| is rebuilt by interpolating the
Mel-filter energies and the Fourier coefficients are then deter-
mined using the original phase,

ĉi,k = |ĉi,k|e∠ci,k . (5)

The synthesised time signal ŝ(n) is then produced by concate-
nating the first Ni samples of the inverse DFT for each frame,
i.e. ŝi(m) = F−1{ĉi,k}.

3.2. Performance assessment and data set

The signal-to-noise ratio (SNR) is evaluated for every speech
utterance as

SNRdb = 10 log10(||s(n)||2/||e(n)||2) (6)

where the noise is the error signal e(n) = ŝ(n)−s(n) between
the synthesised and the original signals. The study also includes
the perceptual evaluation of speech quality (PESQ)1 [33] which
provides a comparison between ŝ(n) and s(n) that predicts sub-
jective mean-opinion scores. The score ranges between 1 (bad)
and 4.5 (no distortion). The copy-synthesis scheme is applied to
the entire TIMIT dataset [34] and, since this is not a supervised
learning set-up, the utterances from the training and test parts
are treated the same.

4. Results and Discussion
Figure 4 shows the Mel-filter copy-synthesis SNR and PESQ
scores averaged over all the utterances in the TIMIT database
using fixed 25ms frames (F, blue), epoch- (E, red) and adjusted
epoch frames (A, yellow) for Mel-filter numbers ranging from
2 to 140. The error bars show the standard deviation of the SNR
and PESQ scores over the utterances. In most speech process-
ing it is desirable to have as few parameters (so in this case,
Mel-filters) as possible. It is, for example, better to have as few
vocoding parameters as possible when designing a TTS system
since that means that the regressor has fewer outputs resulting
in fewer model parameters (e.g. neural-network weights) to be
trained. Similarly, shorter feature vectors for ASR systems re-
sult in a smaller input layer with fewer model parameters to
train. The model design, therefore, presents the familiar trade-
off between compactness and accuracy. The proposed approach
is able to maintain accuracy with more compact representa-
tion (i.e. fewer Mel-filters), apparent in the difference between

1https://www.itu.int/rec/T-REC-P.862-200102-I/en

0 20 40 60 80 100 120 140
0

10

20

30

40

S
N

R
 [d

B
]

F
E
A

0 20 40 60 80 100 120 140
Number of Mel filters

1

2

3

4

5

P
E

S
Q

 s
co

re

Figure 4: The copy-synthesis SNR for fixed frame- (F), epoch-
(E) and adjusted epoch (A) approaches to spectrum estimation
as a function of the number of Mel-filters used in parameterisa-
tion.

the yellow (A) and blue (F) curves of Fig. 4. The adjusted-
epoch approach achieves superior performance for M < 80
Mel-filters but the fixed-frame approach does better as M is in-
creased beyond that. The superior performance for lower M
supports the main argument of the paper, in that epoch-based
spectrum estimation is preferable to fixed-frame analysis. The
performance ceiling that the epoch-based approaches display
needs to be investigated further. The higher frequency reso-
lution of the fixed-frame approach may explain its raised per-
formance as M is increased. The difference between the red
(E) and yellow (A) curves shows how important it is to ad-
just the frame boundaries in the proposed method so that the
rectangular-windowing effect of the padding is reduced. The
use of padding was a result of a difficult design choice as higher
(apparent) frequency resolution was sought with the resulting
interpolation in the frequency domain. This design choice will
be further investigated in future work, but it is nevertheless in-
teresting to see how small adjustments in the frame boundaries
can achieve a big performance gain for the copy-synthesis.

5. Conclusions
The work shows the importance of using glottal synchronous
frame boundaries when calculating DFT coefficients for pro-
cessing speech. The paper presents three arguments for this:
(1) The mathematical argument, that it is not a good idea to
calculate DFT coefficients over a fractional number of periods,
(2) the demonstration using a synthetic speech segment (see.
Fig. 1) and (3) the Mel-filter based copy-synthesis experiments
where the proposed approach was compared to the conventional
fixed-frame approach to calculating the STFT. The paper does
not propose a fully fledged vocoder that is ready for use in
down-stream applications. The copy-synthesis does not, for ex-
ample, handle the angle of the Fourier coefficients, but the third
panel of Fig. 3 shows that the proposed approach has a better
chance of doing so than the conventional STFT. The method
also gives an explicit description of the fundamental frequency
allowing any vocoder built on this approach to model prosody
separately from the short-term spectral content of the speech.
Fixed-frame spectrum estimation does not achieve that.
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