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Abstract
Real-time applications of Automatic Speech Recognition
(ASR) on user devices on the edge require streaming process-
ing. Conformer model has achieved state-of-the-art perfor-
mance in ASR for the non-streaming task. Conventional ap-
proaches have tried to achieve streaming ASR with Conformer
using causal operations, but it leads to quadratic increase in the
computational cost as the utterance length increases. In this
work, we propose a chunked-context masking approach to per-
form streaming ASR with Conformer, which limits the compu-
tational cost from quadratic to a constant value. Our approach
allows self-attention in Conformer encoder to attend the lim-
ited past information in form of chunked context. It achieves
close to the full context causal performance for Conformer-
Transducer, while significantly reducing the computational cost
and maintains a low Real Time Factor (RTF) which is highly de-
sirable trait for resource-constrained low-power edge devices.
Index Terms: streaming ASR, attention masking, ASR for
resource-constrained devices

1. Introduction
Speech is one of the most preferred interfaces to interact with
intelligent devices [1]. As the applications of AI on user devices
continue to grow [2, 3], so does the demand to deploy computa-
tionally efficient Automatic Speech Recognition (ASR) models
on low-power edge devices. In several applications, real-time
speech recognition is desired, meaning the text is predicated on
the go as the speaker utters speech. This mode of speech is
generally referred to as streaming or online ASR [4]. Until re-
cently, Recurrent Neural Network (RNN) based models were
the de-facto choice for streaming ASR, because of their abil-
ity to keep the context in the RNN state from previous inputs
[5, 6, 7]. The introduction of the Transformer in ASR [8] has
shifted the focus from RNN to training-friendly Transformer
encoder-decoder-based models.

Many state-of-the-art (SOTA) end-to-end ASR models
based on Transformer are proposed [9, 10] to perform speech
recognition in a sequence-to-sequence manner, meaning that
they predict the full-text sequence by consuming a complete
speech signal. These models require the speaker to finish
speaking before they can start predicting the text. Convolu-
tion augmented Transformer (Conformer) encoder is proposed
[10] which synergizes the local and global features extraction
by convolution and attention layers respectively, and achieved
SOTA performance for non-streaming ASR. Conformer is pro-
posed in three different sizes and the Conformer-Small is best
suitable for ASR on resource-constrained devices.

Recently, a few techniques are proposed to enable Trans-
former based models like Conformer to work for streaming ap-
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Figure 1: Overview of our proposed streaming Conformer-
Transducer architecture. Conformer consumers chunks of au-
dio where attention layer attends the frames from current and
past chunks. The Transducer decodes the latest encoded chunk
while using the last predicted label from previous chunk.

plications. One way is to make the layers of the encoder causal
[11], meaning the attention layers in the encoder are allowed to
attend only to past and current frames in the sequence. This
future-restricted attention approach has to process the entire
past sequence repeatedly as the new frames arrive. Therefore
the computational cost of such a streaming set-up continues to
grow as the length of utterance increases, given the quadratic
computational complexity of the self-attention layer [12]. An-
other approach is to perform ASR in a chunk-based setting [13],
which processes a chunk of audio frames through the encoder
and then performs decoding on the encoded chunk. Chun-
ked based streaming approach results in significant performance
degradation as the attention layer is only allowed to attend the
elements inside the given chunk.

Our work proposes a context based chunk masking, which
bridges the gap between full context causal attention and chunk-
based attention approaches for streaming ASR. Chunked-
context mask allows attention layer in Conformer to attend not
only elements in the current chunk but also from a predefined
number of previous chunks. Overall our work makes the fol-
lowing contributions:
• It proposes a chunk-based context masking technique to en-

able Conformer-Small to work for streaming ASR with lim-
ited computational cost and low latency.

• It demonstrates the real-time deployment of streaming ASR
with Conformer encoder and Transducer decoder.
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2. Related Work
This section discusses related work in two aspects. First is the
general work related to the deployment of ASR models on edge
devices, and the second is about the proposed methods for en-
abling streaming ASR with Transformer-based models.

For ASR applications on the edge, mainly RNN-based
encoder-decoder models are proposed [14, 15, 16, 17]. RNN-
Transducer [14] model was proposed recently with a reasonably
small size of 35M parameters for edge applications. [15] dis-
cussed the detailed performance analysis of several RNN mod-
els on edge devices. [16] uses knowledge distillation to ob-
tain a streaming model from a non-streaming RNN-Transducer.
A model optimization technique in [17] is used for RNN-
Transducer to optimize the model size for edge devices. How-
ever, the challenge with RNN-based models is that their perfor-
mance degrades for long utterances [18].

Transformer-based models especially Conformer have sig-
nificantly outperformed RNN-based models for end-to-end
ASR tasks [19]. Some recent proposals have enabled Con-
former to work for streaming ASR. A recent work [20] based
on causal masking of the wav2vec2.0 model is proposed, which
works by updating the state of the encoder for every new chunk
of speech frames. Another work [21] achieves streaming ASR
of Conformer with future restricted self-attention. A com-
bined triggered attention-based CTC and RNN decoder mecha-
nism is proposed in [22] which further improves the streaming
ASR performance with a causal Transformer encoder. How-
ever, the causal mechanism of the encoder causes a quadratic
increase in the computational cost as the length of utterance
increases. A sequentially sampled chunk-based streaming ap-
proach is proposed in [23] for Conformer encoder with Connec-
tionist Temporal Classification (CTC) [24] and Transformer de-
coders. However, the computational cost of the encoder still in-
creases linearly for long utterances. Secondly, CTC and Trans-
former decoders are not suitable for single-chunk decoding as
they fail to make a connection between consecutive chunks.

Our proposed Conformer encoder performs streaming ASR
at a fixed computational cost and uses the Transducer decoder
to perform streaming decoding only for the latest chunk while
keeping a connection with the previous chunks.

3. Proposed Architecture
3.1. Chunked-Context Masking

The sequence-to-sequence modeling ability of the Conformer
model comes from the inherent nature of the self-attention layer.
Each element of the sequence (query) computes its attention
score with respect to all other elements of the sequence (keys).
For the speech recognition task, self-attention requires a full
sentence to be spoken to compute attention scores, hence re-
stricting transformers to be applied for streaming ASR without
any modification. The masking technique can restrict the self-
attention layer to attend only specific frames of the sequence
during the training. At inference time, it can process the incom-
ing chunk of frames from speech sequence of the same length
as it was trained.

A causal mask for self-attention as in Figure 2 (a), allows
each new frame or query (Q) in sequence to attend all past
frames or keys (K) as proposed by [20, 21]. Figure 2 (b) shows a
chunk mask which allows only a chunk of audio to compute at-
tention scores with one another as in [13]. Our proposed mask-
ing approach named Chunked-Context Masking allows replicat-
ing a chunked-context inference set-up in the training by shift-
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Figure 2: Different types of masks for streaming Conformer.
Green shows new frames for the current chunk, blue shows the
attended context, and white shows unattended frames. (a) is a
causal mask, when applied in a streaming setup, it computes the
attention for the entire past sequence as the new frame arrives.
(b) is the chunk-based approach which performs attention only
for frames in the current chunk. (c) is our proposed approach
that computes attention while attending to context chunks and
the current chunk.

ing the context mask window for the current and past chunks
as shown in Figure 2 (c). Our mask allows queries to attend
keys from the current chunk and also predefined number of past
chunks for computing attention scores for each frame. ASR is
basically a monotonic alignment task [25], meaning that, ele-
ments in the sequence that are very far from the current frame
are less relevant. To make use of this inherent monotonic na-
ture, discarding past frames beyond a certain context is a win-
win scenario for ASR on resource-constrained edge devices.

Supposing the length of the input sequence is X , and the
dimension of the encoder is D. The complexity of Multi-Head
Self Attention (MHSA) is linear to dimension D and quadratic
to the length of sequence X . On top of that, before comput-
ing the self-attention, linear operations for Query (Q), Key (K),
Value (V), and Output (O) need to be computed and they have
linear complexity with respect to X and quadratic to D. Overall
computational cost of MHSA module, represented by Ω can be
written as Equation 1 .

Ω(MHSA) = 4XD2 +X2D (1)

On the other hand, if we divide input sequence of length
X into chunks of size C each, the complexity of MHSA will be
quadratic to chunk size C multiplied with the number of chunks,
n. Overall the complexity of our Chunked Context Mask-based
MHSA (CCM MHSA) module will be as represented by Equa-
tion 2. For a fixed number of chunks n and size of the chunk
C, the computational cost would remain constant irrespective
of the length of sequence as also shown in Figure 3.

Ω(CCM MHSA) = 4CD2 + (nC)2D (2)

3.2. Chunk Encoder with Transducer (miniStreamer):

After training the model with proposed chunk mask, it pro-
cesses the inference on audio stream as shown in Figure 1. The
chunk of audio of having t frames in each chunk are processed
through the encoder. If we represent the Nth input chunk vec-
tor having C elements as xN , the encoder will take n number
of chunks ranging from xN−n to xN as input and will produce
the corresponding encodings as hN−n to hN .

hN−n...hN = encoder(xN−n...xN ) (3)
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Where n is number of chunks including current chunk and
context chunks. In his way, the maximum number of audio
frames for encoder would be n∗t irrespective of the total length
of audio. The encoded chunks for the latest chunk hN will then
be fed to a decoder to predict text labels.

Several decoding approaches are proposed with Conformer
encoder including CTC [24] Transformer [26] and Transducer
[27]. In the case of chunk-based streaming ASR, the network
requires to perform decoding only for the newest encoded ele-
ments from the current chunk. As for the CTC and Transformer
decoders, they perform decoding on the chunks independently
with no information about the previous frames, hence using
these decoders will not result in appropriate predictions at the
edges of each chunk.

We use a Transducer decoder which consists of a small 2-
layer RNN as a predictor network and a single fully connected
layer-based joint network. Transducer decoding keeps a con-
nection between the last predicted label from the previous chunk
and the following tokens in the next chunk. Given that Trans-
ducer produces uN number of tokens for Nth chunk. This de-
coding step will be represented by Equation 4.

yN = transducer(y
uN−1

N−1 , hN ) (4)

This step is shows in Figure 1 as green block. It is worth
mentioning that, streaming decoding approaches based CTC or
Transformer based decoders, perform decoding on entire en-
coded sequence at each step, which adds a significant computa-
tional overhead. Our proposed architecture performs decoding
only on the encodings of latest chunk, irrespective of context
length in encoder which results in fastest decoding time. It is
also important to reiterate the significance of change in dimen-
sions at different stages of the network. The signal xN in each
chunk of audio signal has t number of frames, which are then
pre-processed after which one frame represents a 10ms audio
signal. These frames are down-sampled by 8 times by follow-
ing sub-sampling modules after which each signal represents a
80ms signal. The encoder embeddings have fixed dimension of
s for each chunk. However, the decoder may produce a variable
number of text labels to align with each audio chunk, hence rep-
resented by uN at the final stage. The parametric details of each
stage of the network are explained in the following section.

4. Experimental Results
4.1. Network Details:

We used the small version of the Conformer[10] as encoder in
our experiments. The first stage of the network is audio pre-
processing, to convert a uni-dimensional temporal audio signal
into 80 MFCC features. We used a 10 ms hop length and a win-
dow length of 25 ms. We also apply spectrogram augmentation
[28] with two masks in each frequency and time dimensions.
Next, we have three 2D convolution sub-sampling layers with
kernel size 3, and 144 filters in each layer. We used layer nor-
malization in each sub-sampling module and this stage of the
network down-samples the audio from 10 ms to 80 ms per ele-
ment of the sequence, which becomes the input of the MHSA
layer of the following 16 consecutive Conformer blocks. Each
Conformer block has a convolution module and MHSA layer
sandwiched between feed-forward modules as proposed in the
original Conformer [10]. We also used sinusoidal positional
encoding relative to the start of each utterance, before feeding
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Figure 3: FLOPS count for different masks of streaming Con-
former. The causal model shows a quadratic increase in the
computational cost as it processes the entire past sequence
for every new chunk. Chunked-context mask based streaming
Conformer-Transducer limits the computational cost by encod-
ing a fixed number of chunks as context and decoding only the
latest chunk.

input elements to Conformer blocks. For the Transducer de-
coder, we used 2 layers of RNN as a sub-word predictor net-
work and a fully connected layer-based joint network to com-
bine the results of the encoder and sub-word predictor. Overall,
our Conformer-Transducer-Small network has 9.4M parameters
for the encoder, 0.9M parameters for the decoder, and 10.3M
parameters in total.

4.2. Training Settings:

We used LibriSpeech [29] 1000 hours dataset in our experi-
ments. We trained the model on standard training-clean and
training-other (960 hours) of the dataset and reported results
for dev-clean and dev-other test sets. For pre-processing of the
text data labels, we used sub-word conversion with a vocabu-
lary size of 256. We trained each model for 200 epochs where
each epoch took 25 minutes on 6 parallel NVIDIA A100 80G
GPUs with a batch size of 4. We used AdamW [30] optimizer
with its standard parameter settings. The networks trained with
streaming masks take longer because these masks are defined
dynamically during the training for different lengths of audio
signals in the batch.

Table 1: Word Error Rate (WER) of different modes of Con-
former on LibriSpeech dataset.

Computation Attention Word Error Rate (WER)
Cost Mask dev-clean dev-other

Fixed Non-Stream 5.52 13.6

Quadratic Causal 5.79 14.61

Limited Chunk 6.01 15.63
Limited (Ours) 5 Chunks 5.96 15.21
Limited (Ours) 10 Chunks 5.81 14.65
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4.3. Results of Proposed Model:

The experimental results for Word Error Rate (WER) are re-
ported in Table 1. First, we trained a non-streaming Conformer-
Transducer network on full sequence length. This offline model
produces the best result on the LibriSpeech dataset but is un-
able to perform ASR in a streaming way. We then trained the
model with a causal mask which allows MHSA layers in Con-
former to work for streaming ASR, but as it attends complete
sequence from the past, its computational cost grows quadrat-
ically as shown in Figure 3. If we train Conformer with a
chunk mask, allowing it to attend frames only in the current
chunk, its WER performance degrades significantly. Our pro-
posed chunked-context mask allows Conformer to maintain its
performance by attending to a limited context and puts a cap on
computational cost for long sequences by discarding the past
frames in a chunked manner. We tried reducing the size of the
context up to 5 chunks (including the current chunk), but the
performance starts to degrade. Hence we find that keeping 10
chunks is the appropriate setting and delivered results closest to
the causal network.

The computational cost of different modes of Conformer is
computed in terms of Floating Point Operations (FLOPS) by us-
ing a Python package, DeepSpeed [31]. We mainly focused on
the self-attention layer as it is the central layer of Transformer
based models. The FLOPS for the MHSA module also involves
linear layer computations for the key, query, value, and out-
put vectors before computing self-attention. These linear layers
have linear computational complexity with respect to the se-
quence length n, and quadratic complexity with respect to the
dimension of the Conformer encoder d, represented as O(nd2).
However, the attention operation has quadratic complexity with
respect to the sequence length n and linear complexity with re-
spect to the model dimension d, represented as O(n2d). There-
fore, the overall FLOPS increase quadratically as the length of
speech utterance increases, given that the model dimension is
fixed. The trend of computational cost increase with respect to
the utterance length is shown in Figure 3.

5. Real-time Deployment of Proposed
Architecture

For the real-time performance analysis of our proposed archi-
tecture, we selected a single NVIDIA A100 GPU. We used an
audio example from LibriSpeech dataset which is almost 15s
long. We feed this audio to the network in form of streaming
chunks. The length of each chunk is 0.8s which results in 18
total chunks. The number of context chunks n in this case is 10
including the current chunk. The proposed miniStreamer en-
coder processes the incoming stream with context chunks and
the Transducer decodes the encodings into text labels only for
the latest chunk. The y-axis represents Real Time Factor (RTF)
which is the relation of end-to-end computational time and au-
dio duration as represented by Equation 5.

RTF =
time(decoder(encoder(xN−n...xN )))

duration(xN )
(5)

Figure 4 shows that for the causal approach, RTF keeps in-
creasing as the sequence length keeps growing, hence encoding
and encoding time also increases. However, for the proposed
chunked-context-based setting, the computational cost rises a
little in the beginning and then stays constant as the new chunks
keep arriving.
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Figure 4: The comparison between Real Time Factor (RTF) for
conventional causal-based streaming approach and our pro-
posed limited chunked-context masking approach. The x-axis
shows the predicted text labels for each 0.8s audio chunk and
y-axis shows the change in RTF with respect to time.

The predicted labels for each chunk are shown along the
horizontal axis as predicted labels of each chunk. It is clear that
the Transducer decoder keeps a connection between sub-words
for consecutive chunks. Therefore, our proposed approach can
work for arbitrarily long sequences, without worrying about in-
creasing computational cost for long sequences. 4.

6. Discussion
Our proposed architecture exploits self-attention in the Con-
former and monotonic nature of ASR to optimally process the
most relevant portion of the audio stream for streaming ASR.
Several streaming proposals for Conformer report good accu-
racy, but it is important to highlight that the actual inference
set-up for streaming Conformer has some challenges for shorter
chunk lengths. Especially the normalization layers in Con-
former cause deviation in predictions for small chunk sizes. In
our case, 0.8s length worked reasonably well for chunked-based
streaming ASR with Conformer-Small. With the proposed set-
tings, miniStreamer achieved a constant RTF for streaming ASR
of long audios, which is promising for real-time applications on
the edge.

7. Conclusion
Conventional streaming techniques for Conformer cause a
quadratic increase in the computational cost as the utterance
length increases. In this work, we proposed a chunked-
context-based streaming mask, which enhances Conformer-
Transducer’s capability to work for streaming ASR. Our pro-
posed architecture, which combines chunk-based streaming
Conformer with the Transducer decoder, resulted in signifi-
cantly reducing the computational cost in terms of FLOPS while
maintaining performance close to full-context causal stream-
ing. The real-time inference analysis of the model shows that it
maintains a low RTF even for long utterances when the conven-
tional causal method results in an increasing RTF. The future
work includes further improving the WER of miniStreamer and
evaluating the model on a range of edge devices.
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[2] M. Tröbinger, C. Jähne, Z. Qu, J. Elsner, A. Reindl, S. Getz,
T. Goll, B. Loinger, T. Loibl, C. Kugler, C. Calafell,
M. Sabaghian, T. Ende, D. Wahrmann, S. Parusel, S. Haddadin,
and S. Haddadin, “Introducing GARMI - A Service Robotics Plat-
form to Support the Elderly at Home: Design Philosophy, System
Overview and First Results,” IEEE Robotics and Automation Let-
ters, vol. 6, no. 3, pp. 5857–5864, 2021.

[3] J. Tang, S. Liu, L. Liu, B. Yu, and W. Shi, “LoPECS: A Low-
Power Edge Computing System for Real-Time Autonomous Driv-
ing Services,” IEEE Access, vol. 8, pp. 30 467–30 479, 2020.

[4] A. Martı́n Garcı́a, I. Gonzalez-Carrasco, V. Rodriguez-Fernandez,
M. Souto, D. Camacho, and B. Ruı́z-Mezcua, “Deep-Sync: A
novel deep learning-based tool for semantic-aware subtitling syn-
chronisation,” Neural Computing and Applications, pp. 1–15, 02
2021.

[5] K. Rao, H. Sak, and R. Prabhavalkar, “Exploring architectures,
data and units for streaming end-to-end speech recognition with
RNN-transducer,” in ASRU, 12 2017, pp. 193–199.

[6] Y. He, R. Prabhavalkar, K. Rao, W. Li, A. Bakhtin, and
I. McGraw, “Streaming small-footprint keyword spotting using
sequence-to-sequence models,” in ASRU, 12 2017, pp. 474–481.

[7] H. Sak, M. Shannon, K. Rao, and F. Beaufays, “Recurrent Neu-
ral Aligner: An Encoder-Decoder Neural Network Model for Se-
quence to Sequence Mapping,” in INTERSPEECH, 08 2017, pp.
1298–1302.

[8] Q. Zhang, H. Lu, H. Sak, A. Tripathi, E. McDermott, S. Koo,
and S. Kumar, “Transformer Transducer: A Streamable Speech
Recognition Model with Transformer Encoders and RNN-T
Loss,” in 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020, pp. 7829–7833.

[9] J. Li, “Recent Advances in End-to-End Automatic Speech Recog-
nition,” ArXiv, vol. abs/2111.01690, 2021.

[10] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer:
Convolution-augmented Transformer for Speech Recognition,” in
INTERSPEECH, 10 2020, pp. 5036–5040.

[11] T. N. Sainath, Y. He, A. Narayanan, R. Botros, W. Wang, D. Qiu,
C.-C. Chiu, R. Prabhavalkar, A. Gruenstein, A. Gulati, B. Li,
D. Rybach, E. Guzman, I. McGraw, J. Qin, K. Choromanski,
Q. Liang, R. David, R. Pang, S.-Y. Chang, T. Strohman, W. R.
Huang, W. Han, Y. Wu, and Y. Zhang, “Improving The La-
tency And Quality Of Cascaded Encoders,” in 2022 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2022, pp. 8112–8116.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You
Need,” Neural Information Processing Systems (NIPS), 06 2017.

[13] S. Zhang, Z. Gao, H. Luo, M. Lei, J. Gao, Z. Yan, and L. Xie,
“Streaming Chunk-Aware Multihead Attention for Online End-to-
End Speech Recognition,” in INTERSPEECH, 10 2020, pp. 2142–
2146.

[14] D. Wang, Y. Shangguan, H. Yang, P. I.-J. Chuang, J. Zhou, M. Li,
G. Venkatesh, O. Kalinli, and V. Chandra, “Noisy Training Im-
proves E2E ASR for the Edge,” ArXiv, vol. abs/2107.04677, 2021.

[15] R. Peinl, B. Rizk, and R. Szabad, “Open Source Speech Recog-
nition on Edge Devices,” in 10th International Conference on
Advanced Computer Information Technologies (ACIT), 2020, pp.
441–445.

[16] G. Kurata and G. Saon, “Knowledge Distillation from Offline to
Streaming RNN Transducer for End-to-End Speech Recognition,”
in INTERSPEECH, 2020.

[17] H. Yang, Y. Shangguan, D. Wang, M. Li, P. Chuang, X. Zhang,
G. Venkatesh, O. Kalinli, and V. Chandra, “Omni-Sparsity DNN:
Fast Sparsity Optimization for On-Device Streaming E2E ASR
Via Supernet,” in 2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2022, pp. 8197–
8201.

[18] A. Narayanan, R. Prabhavalkar, C.-C. Chiu, D. Rybach, T. N.
Sainath, and T. Strohman, “Recognizing Long-Form Speech Us-
ing Streaming End-to-End Models,” in 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), 2019,
pp. 920–927.

[19] P. Guo, F. Boyer, X. Chang, T. Hayashi, Y. Higuchi, H. Inaguma,
N. Kamo, C. Li, D. Garcia-Romero, J. Shi, J. Shi, S. Watan-
abe, K. Wei, W. Zhang, and Y. Zhang, “Recent Developments
on ESPNet Toolkit Boosted By Conformer,” in 2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2021, pp. 5874–5878.

[20] Z. Li, H. Miao, K. Deng, G. Cheng, S. Tian, T. Li, and Y. Yan,
“Improving Streaming End-to-End ASR on Transformer-based
Causal Models with Encoder States Revision Strategies,” in IN-
TERSPEECH, 09 2022, pp. 1671–1675.

[21] T. Hori, N. Moritz, C. Hori, and J. Le Roux, “Advanced
Long-Context End-to-End Speech Recognition Using Context-
Expanded Transformers,” in INTERSPEECH, 08 2021, pp. 2097–
2101.

[22] N. Moritz, T. Hori, and J. Le, “Streaming Automatic Speech
Recognition with the Transformer Model,” in 2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2020, pp. 6074–6078.

[23] B. X. Fangyuan Wang, Xiyuan Wang, “Sequentially Sampled
Chunk Conformer for Streaming End-to-End ASR,” vol.
abs/2211.11419, 2022. [Online]. Available: https://arxiv.org/pdf/
2211.11419.pdf

[24] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber,
“Connectionist Temporal Classification: Labelling Unsegmented
Sequence Data with Recurrent Neural Networks,” in Proceedings
of the 23rd International Conference on Machine Learning,
ser. ICML ’06. New York, NY, USA: Association for
Computing Machinery, 2006, p. 369–376. [Online]. Available:
https://doi.org/10.1145/1143844.1143891

[25] C.-C. Chiu and C. Raffel, “Monotonic Chunkwise Atten-
tion,” International Conference on Learning Representations
(ICLR), 2018. [Online]. Available: https://openreview.net/pdf?
id=Hko85plCW

[26] C. Gao, G. Cheng, R. Yang, H. Zhu, P. Zhang, and Y. Yan, “Pre-
Training Transformer Decoder for End-to-End ASR Model with
Unpaired Text Data,” in 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2021, pp.
6543–6547.

[27] F. Boyer, Y. Shinohara, T. Ishii, H. Inaguma, and S. Watanabe,
“A Study of Transducer based End-to-End ASR with ESPnet:
Architecture, Auxiliary Loss and Decoding Strategies,” CoRR,
vol. abs/2201.05420, 2022. [Online]. Available: https://arxiv.org/
abs/2201.05420

[28] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “SpecAugment: A Simple Data Augmentation
Method for Automatic Speech Recognition,” in INTERSPEECH.
ISCA, 2019, pp. 2613–2617.

[29] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An ASR corpus based on public domain audio books,”
in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 5206–5210.

[30] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” in International Conference on Learning Representations
(ICLR), 2017.

[31] GitHub Repository, “DeepSpeed,” https://github.com/microsoft/
DeepSpeed.

3281


