INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

Dynamic Encoder RNN for Online Voice Activity Detection in Adverse Noise
Conditions

Prithvi R.R. Gudepu®, Jayesh M. Koroth?, Kamini Sabu®, M A Basha Shaik*

Samsung R&D Institute Bangalore, India

{p.gudepu, jayesh.mk, kamini.sabu, m.shaik}@samsung.com

Abstract

The majority of online Voice Activity Detection (VAD) mod-
els employ a Recurrent Neural Network (RNN) component to
capture long context which helps to improve noise-robustness.
These RNN components are static models which do not make
efficient use of the model’s predictions from previous frames.
In this work, we introduce a new Dynamic Encoder RNN (DE-
RNN) that encodes the target speech dynamically to facili-
tate distinguishing of target speech from noise. Experiments
on different established baseline architectures by modifying
their RNN component by the addition of DE-RNN, show im-
provement in both background noise and secondary competing
speaker noise scenarios. We used publicly available datasets for
experiments.

Index Terms: VAD, RNN, Encoder, Dynamic

1. Introduction

Voice assistants are an important interface between an Al sys-
tem and humans for giving commands. It is deemed to even-
tually become the primary, if not the only, method. Hence, it
is imperative for the components of voice assistants, includ-
ing VAD, to work in all kinds of difficult scenarios possible.
VAD is a pre-processing step to separate speech and non-speech
portions of the audio by classifying each time frame into two
classes. This helps downstream tasks like Automatic Speech
Recognition (ASR) and speech enhancement to deal with only
relevant audio signal portions.

The traditional VADs [1] [2] are known to work efficiently
for audios in clean environments. They are based on thresh-
olding short-time energy and other acoustic features. They
fail in many real-life cases, especially where the noise is non-
stationary and highly varying, due to the fixed thresholding na-
ture of the methods [3]. Statistical models for VAD offered a
substantial improvement over traditional methods [4] [5] [6] [7].
Recently neural network-based systems for VAD [8] [9] [10]
[11] [12] [13] has been studied extensively and shown to ben-
efit from non-linear operations to work well in difficult noisy
scenarios. A challenging scenario for VAD is the presence of
babble or speech-based noise due to the similar acoustic char-
acteristics with the target speech. Such cases have been consid-
ered in [14] and [15]. The most challenging case is when the
speech-based noise is not babble noise far in the background,
but instead a secondary competing speaker close to the main
speaker and is clearly intelligible making it a daunting task. Ex-
isting VAD architectures may not be able to handle such real-
life scenarios [16].

Most of the VAD applications require both real-time
lightweight online processing and robustness to challenging
non-stationary noises. Convolutional Neural Networks (CNN)

are good at extracting complex high-level features in addition
to the commonly used STFT-based features [10][12]. Atten-
tion mechanisms are good at relating different sections of the
audio signal to leverage the context [9]. Online attention-based
models are preferred in speech tasks for real-time requirements,
but they face a trade-off between the low computation time and
leveraging the full temporal context. RNN layers are also used
in the VAD models to effectively use the context in systems with
real-time requirements [8] [17]. The most popular RNNs used
for long context are Long Short Term Memory (LSTM) and
Gated Recurrent Units (GRU). However, they give more im-
portance to recent frames processed compared to segments that
occurred much earlier in time. This affects the most when the
model needs to differentiate the target speech from the clearly
intelligible secondary speech. Hence, it is essential to encode a
representation of the target speech, which helps in distinguish-
ing it from the rest of the signal.

RNNs have been used as encoders in different tasks like
ASR [19], and machine translation. The input sequence is en-
coded into a representation vector used for further processing.
Encoders became popular for sequential tasks when they were
used in machine translation to represent the semantics of the
sentence into a vector [20]. In speech-related tasks, encoders
are widely used as a first step to transform the audio signal.
Generally, encoders process the entire sequence which does not
effectively capture the complex differentiating characteristics
between speech and noise portions required for VAD.

A dynamic system can be used to encode only the speech
frames predicted by the model. Dynamic Neural Networks [21]
is an emerging research topic where the models, as opposed
to static systems, can adapt their structure or parameters based
on the input and model state during inference. Therefore, they
have better representation power, efficiency, and interpretability
than static models. Skip-RNN [22] updates a controlling signal
in every step either to update or to copy the hidden state from
the previous step. Structural-Jump-LSTM [23] has an agent to
make the skipping decision conditioned on the previous state
and the current input.

We employ a system to selectively encode only the target
speech portion and skip the non-speech portion, for the model
to learn a representation of target speech. We make use of the
model’s output for a particular frame as a trigger to make the
skip decision dynamically. If the frame is predicted as speech,
we process the frame to update the encoded representation; but
if predicted as non-speech, we skip the frame. We experi-
ment on publicly available datasets Librispeech [24], WHAM
noise [25], and Audioset noise [26] from DNS challenge [27].
We simulate the noise conditions with and without a nearby sec-
ondary speaker who is slightly farther from the microphone than
the main speaker. We modify different baselines with our pro-
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posed system and show improvement.
The novel contributions of this paper are listed below.

* The proposed method is the first of its kind to use speech-only
encoder for VAD task.

* We dynamically use the model’s output class prediction to
isolate and learn a representation of target speech.

¢ We show that replacing RNN with DE-RNN in different
baseline architectures improves their performance.

¢ Further, the challenging secondary speaker noise scenario is
tested to find the improvement in the baseline system perfor-
mance.

2. Architecture

In this section, we elaborate our proposed DE-RNN. We use
a dynamic neural network model to learn the representation of
target speech. As the model gets trained, it eventually learns to
categorize every frame into speech (1) or non-speech (0) class.
An Encoder RNN layer in the proposed system runs along-
side the prediction RNN layer of the baseline model as shown
in Figure 1. The different steps involved are summarized below.

1. At time frame ¢, the prediction layer accepts the input (the
concatenation of the features extracted from the speech frame
at t and the hidden state of the Encoder RNN) and outputs
softmax probabilities for speech and non-speech class.
Based on the predicted class, a decision is taken whether to
unroll the encoder RNN cell for time frame ¢.

If the frame is predicted as non-speech class, the encoder
RNN cell unroll is disabled. If the frame is predicted as
speech class, it takes the feature frame at time ¢ as input and
unrolls the RNN cell. This decision-making is illustrated in
the control algorithm 1.

As shown in Figure la, there is a control system after
the prediction layer which decides the behavior of the encoder
RNN. It can be noted that since the RNN cell does not process
each of the time frames, it computationally costs less than a
regular RNN layer, depending on the proportion of non-speech
frames. Figure 1b illustrates the skipped updates to encoder
RNN on non-speech frames.

2.1. Why Dynamic System?

Static RNN encoders process the entire temporal sequence.
Since there is no feedback from the model predictions, they
have to independently learn the distinguishing features of
speech from noise. Using the model predictions helps reuse
the already computed information (classified speech portions)
to encode a representation of target speech. Since this encoded
information embedded in the hidden state of the encoder RNN is
passed as an additional feature to the prediction layer, the pre-
diction layer can internally learn to compare the input feature
with this encoded target speech characteristics for similarities
to do a better classification of frames.

3. EXPERIMENTS
3.1. Data

We use three datasets for simulating the required training and
testing datasets. Utterances from Librispeech corpus are used
as clean speech utterances. The noise audios are taken from
WHAM and Audioset. WHAM corpus consists of noises
recorded in different environments like restaurants, cafes, bars,
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At time frame t:
Prediction_class[t] = Prediction_RNN(embedding,
Feature[t])
if Prediction_class[t] == "1" then
Encoder_RNN unroll(Feature][t]),
‘ Update(Encoder_RNN_hiddenstate)
else
Encoder_RNN_hiddenstate[t] =
‘ Encoder_ RNN_hiddenstate[t-1]
end
embedding= Encoder_RNN_hiddenstate|t]
Algorithm 1: Control algorithm for the proposed system

Table 1: Configurations for simulating the noisy reverberated
data.

x  U[6,10]
Room y  UI6.10]
Absorption factor U[2.5,5]

. x  Freem 4+ U[-0.5,0.5]
Mic. Pos [m] y  U[0,05]
Source Pos. [m] ; g[[((;: ;C;fffgl ]

x U0, Zroom]
Secondary Source Pos. [m] y  UL0, Xroom]
dist(mic, sec. source) > dist(mic, source)
SNR [dB] (with sec. source) U[1,10]
SNR [dB] (mix with noise) U[-3,20]

and parks which cover the regularly occurring noises in public
areas. Audioset is a collection of about 2 million human-labeled
sound clips of length 10 seconds drawn from YouTube videos
and belongs to 600 different audio events. This covers diverse
range of possible noises encountered.

Room Impulse Responses (RIRs) are generated by vary-
ing different acoustic conditions such as microphone position,
speaker position, reverberation factor, and room dimensions as
shown in Table 1. We simulate the datasets using RIRgenera-
tor [28] to cover various scenarios encountered in real-life. We
retain the default mic and speaker settings provided by the py-
roomacoustics for generating RIR.

3.1.1. Datasets

We simulate three different datasets spanning three different
noise scenarios.

1. Dataset-1 (Background Noise): This is the single-speaker
scenario with no competing speaker. Librispeech dataset
speech files are taken as the ground truth. The speech files
are convolved with RIR and then mixed with noise files from
WHAM corpus. The mixing was done with SNR chosen
from the [—3, 20] dB range. The methodology followed is
similar to data generation in [29].

. Dataset-2 (Secondary Speaker and Background Noise): This
is the most challenging case for VAD in a practical scenario.
Here, a secondary speaker is close to the main speaker though
a little farther from the mic. This case is frequently seen by
voice assistants but they tend to fail here since both the sig-
nals are speech signals. It can be noted that the target speech
is originated from a source closer to the mic, while the sec-
ondary speech (which is the noise component here) is origi-
nated from a source further away. This characteristic needs
to be leveraged by the model to differentiate between them.
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Figure 1: The architecture of the proposed algorithm

One-half of the audio files considered in this case are created
with the same setup used for the Dataset-1. For the other half,
an additional speaker, taken from the Librispeech dataset it-
self, is added in the RIR simulation. For significant amount
of noise in the signal, the secondary speech signal must be
of similar length to the target speech. Librispeech dataset
is sorted according to audio lengths. For each of the target
speech, the adjacent speech signal in the sorted list is chosen
as secondary speech. It should be noted that the speaker ids
of the target and secondary signal should be different. It is
also ensured that a target signal in one simulation configura-
tion will likely be chosen as a secondary signal in a different
configuration.

Dataset-3 (Secondary Speaker and Diverse Noise): A simi-
lar setup to Dataset-2 is used here. But, instead of WHAM,
the Audioset corpus is used to cover a wide range of noise
types. The noise corpus is representative of real-world sce-
narios consisting of both synthetic and real recordings.

Librispeech dataset used for our data generation is not bal-
anced with respect to the silence vs speech ratio. Therefore, the
silence regions greater than 300 ms are elongated by adding Os
such that the speech and silence lengths are balanced. For this,
the silence regions are detected using WebRTC-VAD [30]. An
end silence of 3 seconds is added at the end of each audio before
convolving with RIR. The speakers and the noises were divided
prior to the simulation, to have different speakers and noise in
the train and test. In each dataset, 30 hrs of training, 5 hrs of
validation, and 5 hrs of testing audios were generated.

3.1.2. RIR simulation

The mic is positioned at the middle of one side of the room.
The two types of RIR configurations used here are shown in
Figure 2.

Secondary speaker case: For each target source audio,
four secondary speakers at the two different position configu-
rations are used, totaling 8 RIR simulations per target source.
Source and noise are chosen such that their lengths are similar.
Noise audios are slightly pushed in time by adding silences (of
length chosen from U[1, 3] seconds) at the beginning to have
noise portions after the speech ends. Then zeros are padded
to equate both lengths as required. The position of the main
speaker is randomly chosen within 3/4th room length from the
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mic. After the main position is chosen, random positions are
picked until we get the distance of the Noise source from the
mic greater than that with the main speaker. This characteristic
is important to differentiate the main speaker at uniform distri-
bution at a possibly larger distance than the source radii from
the mic.

Single speaker case: For each source audio, 8 different
position configurations are used, totaling 8 RIRs simulations per
target source with speaker position chosen randomly anywhere
in the room.
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Figure 2: The two types of room setups shown for secondary
speaker and single speaker case

3.2. Baseline Architectures

To assess the efficacy of the proposed DE-RNN, established
baselines are implemented with the RNN component modified
to DE-RNN system. The parameters and layer sizes of each
individual model are set such that the computation times are
small and comparable. For each of the baselines, we trained
three models: with 1 layer RNN, with 2 layer RNN, and with

DE-RNN.

* Gated Recurrent Unit VAD [31]: GRU is a simpler alternative
to LSTM which does not have a separate cell state but only a
hidden state. We use 100 dimensions GRU. 40-dimensional
log-mel spectrograms are used as features with a frame step
of 20 ms.

* Long Short-Term Memory network based VAD [32]: LSTMs
are widely used recurrent neural networks that help in learn-



ing long-term dependencies. We use 100 dimensions hidden
state LSTM. 40-dimensional log-mel spectrograms are used
as features with a frame step of 20 ms.

e Hybrid CNN-LSTM VAD based on [29]: This consists of
two 2D-convolutional layers each followed by MaxPool, a
Dense layer followed by LSTM layer. The layer sized used
as mentioned [29]. 32 x 32 spectrogram images are used as
features. They are formed by stacking 32 of 32-dimensional
log mel-filterbank energies with a frame step of 20ms.

¢ ResectNet [33]: State-of-the-art system for lightweight on-
line VAD that does feature extraction by Sinc Convolutions
and Resectnet blocks followed by LSTM layer. The layer
size used as mentioned [33]. It operates in time-domain with
640 sample frame length (40 ms) with a 320-sample (20 ms)
frame-shift is used.

3.3. Training Setup

In all the models, after the final RNN layer, a Dense layer with
softmax activation is added to give probabilities for speech and
non-speech classes. We use a Stochastic Gradient Descent op-
timizer with learning rate of 0.0005. Categorical cross-entropy
loss is used. For 1-layer RNN and 2-layer RNN models, we use
a batch size of 64. For DE-RNN, due to the dynamic nature
of the system, a batch size of 1 is used. The base model can
be pre-trained with a larger batch size before modifying to DE-
RNN for faster convergence. Tensorflow v2.11 [34] is used for
training the models.

4. Results
10
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Figure 3: ROC curve for ResectNet systems on Dataset-3

We experimented on four baseline systems with 1-layer
RNN, 2-layer RNN and DE-RNN and plotted the ROC (Re-
ceiver Operating Characteristics) curves for demonstrating the
performance of the proposed method. In Figure 3, ROC is plot-
ted for the baseline ResectNet model and the proposed DE mod-
ification. The x-axis corresponds to the False Positive Rate
(FPR) and the y-axis corresponds to the True Positive Rate
(TPR).

As shown in Table 2, in the baseline systems, the additional
layer of RNN did not give any substantial improvement. On the
other hand, modifying the baseline by the addition of a dynamic
encoder layer increases the AUC values indicating the improve-
ment in the classification ability. Also, the computations are
lesser than an additional RNN layer since the encoder layer in
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Table 2: VAD accuracy in Area Under Curve percentage for
the baseline systems with 1 RNN layer (L1), 2 RNN layers (L2)
and their modified version with the addition of DE-RNN layer
are tabulated. The performance of the models are tested for
Background noise case, Secondary speaker case and Diverse
noise case.

Model Dataset-1 | Dataset-2 | Dataset-3
GRU L1 89.10 90.59 88.39
GRU L2 88.91 90.20 88.56
GRU DE-RNN 90.38 92.70 90.20
LSTM L1 89.24 90.57 88.20
LSTM L2 88.86 90.88 87.37
LSTM DE-RNN 90.48 92.69 90.03
Hybrid cnn-LSTM L1 87.40 90.60 88.10
Hybrid cnn-LSTM L2 87.10 91.47 85.70
Hybrid cnn-LSTM DE-RNN | 91.65 93.90 90.60
ResectNet L1 87.20 90.60 88.10
ResectNet L2 88.80 90.30 88.60
ResectNet DE-RNN 91.47 94.40 89.72

DE-RNN skips the non-speech frames.

5. Conclusion

In this paper, we proposed a Dynamic Encoder RNN to dy-
namically learn a representation of the target speech using the
model outputs from previous frames. We modified the RNN
component of different VAD models, including state-of-the-art
architectures, by incorporating our proposed Dynamic Encoder
RNN system and showed that the proposed modification im-
proves AUC of the ROC curve in different noise conditions. We
tested and showed improvements for the general background
noisy cases as well as the secondary speaker cases which is the
most challenging real-life scenario for VAD task
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