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Abstract
Recent studies have found that model performance has a smooth
power-law relationship, or scaling laws, with training data and
model size, for a wide range of problems. These scaling laws
allow one to choose nearly optimal data and model sizes. We
study whether this scaling property is also applicable to second-
pass rescoring, which is an important component of speech
recognition systems. We focus on RescoreBERT as the rescor-
ing model, which uses a pre-trained Transformer-based archi-
tecture fined tuned with an ASR discriminative loss. Using such
a rescoring model, we show that the word error rate (WER) fol-
lows a scaling law for over two orders of magnitude as training
data and model size increase. In addition, it is found that a pre-
trained model would require less data than a randomly initial-
ized model of the same size, representing effective data trans-
ferred from pre-training step. This effective data transferred is
found to also follow a scaling law with the data and model size.
Index Terms: automatic speech recognition, rescoring, pre-
training, scaling laws.

1. Introduction
State-of-the-art automatic speech recognition systems (ASR)
perform second-pass rescoring in which the n-best hypothe-
ses, generated by the first-pass, are reranked to improve accu-
racy [1, 2, 3, 4, 5]. The need for second-pass rescoring stems
from the architectural constraints of running a low-latency and
streaming first-pass. To ensure improved performance and
better WER, minimum WER (MWER) loss is typically ap-
plied [6, 3, 5, 7] when training a second-pass rescoring model.

Research has found that model performance has predictable
and favorable scaling properties with respect to training data
size, model size, and compute across a variety of modalities, in-
cluding language [8, 9, 10], vision [11, 12], and acoustics [13].
These scaling laws not only provide supportive evidence in fa-
vor of “large models”, but they also provide researchers with the
ability to determine the suitable configuration based on training
data, model size, and computation.

In spite of some recent studies showing that increasing
model size results in better ASR rescoring performance [14, 15,
16, 17], there has not yet been a systematic study on the scaling
properties of second-pass rescoring with data and model size.
Understanding the scaling properties of adopting optimal data
and model size would be critical, as (a) acquiring the transcribed
data required for discriminative training is costly, and (b) when
deployed in production, larger models require more expensive
hardware to maintain low latency.

Additionally, pre-training’s impact on ASR rescoring per-
formance is not well understood. In spite of their success at
reducing the amount of annotated data needed for downstream

language understanding tasks, pre-trained language models,
such as BERT [18], have not been widely applied to second-pass
ASR rescoring. Recent studies have examined how pre-trained
models can improve ASR rescoring [19, 20, 21, 16, 22, 23, 24],
but there is no systematic study of how pre-training affects
rescoring performance for different models and data sizes, and
whether a scaling law, proposed in a previous work [25], can
capture the effect.

In this work, we fill the gaps in the literature regarding
rescoring models employed in speech recognition systems, and
systematically study the scaling properties for both randomly
initialized and pre-trained discriminative rescoring models. We
use the recently proposed RescoreBERT [16] rescoring model,
which is based on a BERT architecture pre-trained on large cor-
pora. The RescoreBERT model encodes the full context of the
hypothesis using a bi-directional self-attention architecture. We
demonstrate that WER follows a power-law relationship with
training data size and model size for over two orders of mag-
nitude of the range studied. Furthermore, we underscore the
importance of pre-training for second-pass rescoring, and show
that effective data transferred from pre-training allows a model
to require less training data to achieve the same performance. A
power-law relationship can also be used to describe the effective
data transferred.

2. Experimental Setup

2.1. RescoreBERT

We use RescoreBERT [16] as the rescoring model to explore
the scaling law. As illustrated in Figure 1, RescoreBERT model
uses a BERT model with a feed-forward network attached at the
BERT encoder classification (CLS) token embedding (CLS) to
predict a single second-pass score for a given n-best hypothesis.
This score is linearly interpolated with first pass score for re-
ranking. The final score si used for re-ranking is therefore,

si = sfi + w · ssi , (1)

where sfi and ssi are the scores from first and second passes,
respectively, and w is a hyper-parameter.

Following [16], we train a RescoreBERT model using a
minimum WER (MWER) discriminative loss [7]. The training
minimizes expected word error rate calculated on given n-best
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Figure 1: Illustration of RescoreBERT. Each hypothesis is in-
dividually encoded by BERT and represented by CLS; it is
then followed by a feed-forward neural network to compute a
sentence-level second-pass LM score. The scores are then in-
terpolated with first pass scores for re-ranking. The figure is
reproduced from the original RescoreBERT paper [16].
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Pi is the posterior probability of a hypothesis i, and ϵi is the edit
distance from the ground truth transcription. The MWER loss
LMWER represents the expected number of relative word errors,
with ϵH being the averaged word errors across the n-best list.

2.2. Experiments Performed

In the original RescoreBERT paper [16], discriminative train-
ing is performed as a fine-tuning step using pre-trained BERT
models. In this study, we train both pre-trained and randomly
initialized models to study the effects of pre-training.

The effective batch sizes used for training are 512, 512, 512,
2048 sets of n-best hypotheses for the 5M/17M/170M/700M
models, respectively. Learning-rate decay and Adam optimizer
with default parameters are used, with initial learning rates of
10−5 for 5M/17M/170M and 5×10−6 for 700M models. Train-
ing is applied with different model sizes and data sizes. We ap-
ply early stopping based on a development set, and report WER
based on the test set.

2.3. Model and Data Sizes

We use four variants of BERT models with different sizes as
outlined in Table 1. The models are pre-trained with MLM
(Masked Language Model) objective, first with Wikipedia and
mC4 [26], and then internal catalog data (up to around 1 trillion
tokens in total pre-training data).

In the discriminative training phase of RescoreBERT mod-
els, we utilize internal datasets consisting of de-identified user
interactions with a conversational agent in English. We use an
RNN-T model [27] as the first-pass model to generate n-best
hypotheses. The train, dev and test splits, in this study, con-
tain 95300, 30 and 10 of utterances, respectively. To study the
effects of training data, different fractions of training are used.
We use internal data for this study, as there is no readily avail-
able public speech data at this large size to study scaling laws.

Table 1: Summary of architecture details of BERT models.

Model parameters (ex-
cluding embeddings) 5M 17M 170M 700M

Hidden Size 320 768 1024 1536
Number of Layers 4 4 16 20
Number of Attention
Heads 16 16 16 16

Intermediate Layer Di-
mension 1200 1200 3072 6144

Embedding Parameters 49M 118M 157M 460M
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Figure 2: Normalized WER WERnorm (defined in Equa-
tion (5)) versus training data for (a) models trained from scratch
(b) models finetuned from pre-trained models.Dashed lines de-
note model predictions from Equation (7) for (a) and Equa-
tion (8) for (b). Both axes are on log scale.

However, the authors believe that the phenomena described in
this paper should apply to any similar set of speech data.

3. Results and Discussion
3.1. Normalized WER (Word Error Rate)

To showcase the effectiveness of second-pass rescoring, we re-
port the results in WERnorm, which is defined as

WERnorm =
WER2P −WERoracle

WER1P −WERoracle
(5)

where WER1P and WER2P are WER before and after second-
pass rescoring. WERoracle is oracle WER, which provides a
lower bound for the minimum WER achievable from second-
pass rescoring. For the test in this study, WERoracle is 66%
relative lower than WER1P, meaning that if WERnorm is 0.5,
second-pass rescoring would provide 33% relative reduction in
WER over first pass. WERnorm becomes 0 when WER from
rescoring approaches oracle, and becomes 1.0 when rescoring
fails to improve over first pass.

3.2. Training from Scratch

We first study the effects of training data and model sizes on
WER when trained from scratch. The results can be found in
Figures 2(a) and 3(a). We observe that WERnorm is indepen-
dent from model sizes, and has a power-law relationship with
training data. It indicates that for the range of data in this study,
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Figure 3: Same data as in Figure 2 but plotted with a different
x-axis. Normalized WER WERnorm (defined in Equation (5))
versus model parameters for (a) models trained from scratch (b)
models finetuned from pre-trained models. Dashed lines denote
model predictions from Equation (7) for (a) and Equation (8)
for (b). Both axes are on log scale.

the model is limited by training data. Because the training data
here require human annotation and are hence limited, this study
is limited to this low-data regime, but we expect that this regime
would be the case for most speech recognition applications;
while a model size of 5M is at the lower end of what’s typical
for a BERT model, 95, 300 of training data are at the upper end
of what’s usually used for speech recognition systems. It is in
contrast to previous work on language modeling [8] where text
data is easily accessible, which allows it to explore both sce-
narios of being limited by training data and limited by model
sizes.

For this regime where data is limited, the previous work [8]
proposed the following equation to describe the relationship be-
tween test set performance and training data size,

L =

(
DC

D

)αD

, (6)

where L is the test loss, D is training data size, and DC is a
model parameter and represents the critical value of D where
the contribution of data to the loss function is equal to 1.0.

We found that this equation also describes the data well for
WERnorm, as evidenced by the goodness of the fit in dashed
lines in Figures 2(a) and 3(a). The equation is now,

WERnorm =

(
DC

D

)αD

, (7)

where DC is 8.82 and αD is 0.0146, both of which are esti-
mated from fitting the data of log(WERnorm) vs log(DC).
The small value for DC indicates that a small amount of data is
sufficient to bring WERnorm below 1.0. This makes sense for
our data, since if the second pass just outputs the same scores
for all the n-best hypotheses, due to linear interpolation with the
first pass scores, WER would be the same as the first pass, and
WERnorm would be equal to 1.0.

3.3. Finetuned from Pre-trained Models

We then study how WER is changed when the model is fine-
tuned from a pre-trained model. As shown in Figures 2 and 3

pre-training model helps reduce WER as expected.
As shown in Figure 3(b), a larger model would now lead

to more improvement, as opposed to what is found for mod-
els trained from scratch where the model performance is inde-
pendent to the model size (as in Figure 3(a)). It shows that for
pre-trained models, the improvement from increasing the model
size is not due to the larger capacity of the model to better learn
from finetuning data, but rather it is its ability to better mem-
orize and leverage the knowledge from pre-training. Without
studying the scaling laws of both randomly initialized and pre-
trained models, it would be hard to distinguish the effects from
the two, underscoring the importance of such exercises.

In Figure 2, to achieve the same WER for a given model
size, one would require less training data due to pre-training.
For example, for a 5M model to achieve WERnorm of 0.875,
data required would be ∼ 30k if trained from scratch, but only
∼ 1k hour if pre-trained. Furthermore, this delta in data re-
quired depends on model size (as discussed in the previous para-
graph) and also training data itself (reflected by the change of
slope between Figures 2 (a) and (b)).

This reduction in data required due to pre-training and its
relationship to finetuning data and model size are consistent
with a previous work [25] studying scaling for transfer learning.
In the paper, it introduces the concept of effective data trans-
ferred from pre-training, DT , to capture this delta, and found
that it can be captured by DT = kDαNβ . Hence, for a given
data size, due to pre-training, its effective data size would be-
come (D +DT ), or (D + kDαNβ).

As also explained in the paper [25], in this low data regime,
one can ignore the contribution of the original D as the effective
data from transfer is much greater than the amount of data fine-
tuned on, DT ≫ D, which is also demonstrated in the example
before where DT and D are 30k and 1k respectively.

Hence, the effective data size (D + kDαNβ) can be sim-
plified to kDαNβ . Plugging into Equation (7), and we have the
equation as follows,

WERnorm =

(
DC

kDαNβ

)αD

. (8)

DC and αD have the same values as in Equation (7). As shown
with dashed lines in Figures 2(b) and 3(b), the equation cap-
tures the data well, where k is 2.27 × 10−11, α is 1.71, and
β is 1.24. In contrast to the previous work [25] where the pre-
training and finetuning steps are trained with the same loss and
different domains of data, it shows that this equation also holds
even when the pre-training and finetuning have different train-
ing objectives. The ratio of α and β suggest that a 10x increase
in model size would be worth approximately a 5.3x increase in
data size. Hence, the scaling law here offers useful insights as
one decides between obtaining more training data and increas-
ing model sizes to improve the model performance.

3.4. Applicability of the Scaling Law

Hence, we have proposed scaling laws for both randomly ini-
tialized model and pre-trained models as in Equations (7) and
(8), respectively. Even though the data sizes (from 300 to 95300
) and model sizes (from 5M to 700M) represent most speech
recognition systems, it is still helpful to discuss the limitation in
the applicability of the scaling laws described here.

First, as also described in the previous paper [28], scaling
laws would break down at both extreme ends of the data size
spectrum. When there is very little data, the model can per-
form as well as random guessing, and in our case the second
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pass cannot further improve over the first pass, yielding 1.0 for
WERnorm; at the other extreme, there would be a non-zero
lower bound error past which the models will not be able to im-
prove with more data (or model parameters). This lower bound
error or irreducible error would include Bayers error and noises
in the data.

Second, as shown in Section 3.2, for randomly initialized
models, the regime in this study is limited by the amount of
data. Once we increase by a sufficient amount of data, the model
size would start to influence WERnorm even for randomly ini-
tialized models, and scaling laws for both randomly initialized
models and pre-trained models likely need to be modified, as
shown in the previous paper [25].

4. Conclusions
Using RescoreBERT as the rescorer, we demonstrate that scal-
ing laws are also applicable for discriminative speech recog-
nition rescoring models, for over two orders of magnitude of
range studied. For randomly initialized models, WER is found
to have power-law relationship with training data size, and in-
dependent from model sizes, indicating that it is operating at a
regime where the data is limited. Due to the large data in this
study (almost 100k ), we expect that this regime would be the
case for most speech recognition applications.

For pre-trained models, it is found that WER also has a
power-law relationship with training data and model sizes. No-
ticeably, different from randomly initialized models, WER now
decreases with increasing model size, as larger model has the
ability to better memorize and leverage the knowledge from
pre-training. In addition, it is found that a pre-trained model
would require less data than a randomly initialized model of the
same size, representing the effective data transferred from pre-
training. This effective data transferred also follows a scaling
law with the data and model sizes.

While we focus on RescoreBERT as the discrminative
rescoring model to study the scaling laws, it would be inter-
esting to see whether the scaling laws proposed in this study
hold true for other types of discriminative rescoring mod-
els, especially when they are conditioned on first-pass au-
dio/lattice [3, 4, 5, 29].
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