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Abstract
Extensive style transfer methods have shown that instance nor-
malization (IN) is a simple yet effective way to remove style
information from original inputs. However, few studies have
focused on whether these channel-wise feature statistics, such
as mean and standard deviation (std), are consistent locally and
globally, which ultimately leads to insufficient feature decou-
pling. In this paper, we first propose locality-based instance nor-
malization (LoIN) to impose statistical feature consistency con-
straints on latent feature maps. LoIN performs normalization
using local feature statistics which are calculated on randomly
selected frames rather than on the entire set of frames used in
the training phase. Since the style representation is unique and
stable, the feature statistics of the latent feature submaps will
tend to be consistent as the training progresses. In particular,
LoIN is lightweight, less computationally intensive, and trans-
ferable to any IN-driven VC method. Experimental results show
the superiority of LoIN in disentanglement and transfer perfor-
mance and show improvement in both speaker similarity and
content consistency.
Index Terms: voice conversion, style transfer, instance normal-
ization, feature disentanglement.

1. Introduction
Voice conversion is a technology that aims to modify the
speaker style of a speech signal while preserving its content in-
formation. From an information-theoretic perspective, speech
can be divided into two independent and complementary com-
ponents: speaker-dependent information (SDI) and speaker-
independent information (SII). To transfer arbitrary voice styles,
the common framework is to build an encoder-decoder architec-
ture, where the speaker encoder and content encoder decouple
speech into SDI and SII respectively, and then the decoder pre-
dicts converted acoustic features conditioned on source SII and
target SDI.

In terms of feature disentanglement, despite common
information-constrained bottlenecks in encoder-decoder mod-
els [1, 2, 3, 4] and adversarial feedback in GAN-based mod-
els [5, 6, 7, 8], the instance normalization (IN) [9] module has
also been proven to be a simple yet effective technique in the
content encoder for removing style information, which is in-
terpreted as a style normalization by normalizing feature maps
using the channel-wise feature statistics as mean and standard
deviation (std). These statistics are generally used to repre-
sent speaker styles in some typical methods. For example,
AdaINVC [10] uses 11 IN layers in the content encoder, and
AgaINVC [11] transmits the frame-wise mean and std as style
information to the decoder based on the Unet [12] architecture.
Successive works have also been continuously expanding IN,
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Figure 1: The mean distributions across different feature
submaps, with each line representing a specific utterance. The
horizontal axis represents the number of frames included in the
feature submap used for statistics. The figure shows that the
channel-wise feature statistics used to represent speaker style
are not consistent in submaps.

with the launch of adaptive instance normalization (AdaIN) [13]
and weight adaptive instance normalization (WAdaIN) [14].
However, these methods are still limited to obtain more signif-
icant improvements due to the lack of consideration for both
local and global consistency of style.

To demonstrate the inconsistency in latent feature maps
produced by AdaINVC, we conduct statistical analysis on the
mean of latent feature submaps. Fig.1 depicts the average val-
ues of the channel-wise means across various feature submaps.
The sharp changes in the mean distribution, such as E05, sug-
gest that the style representations in different feature submaps
are inconsistent, which hinders the stable decoupling of IN. To
enhance the stability of feature decoupling, we delve deeper
into the mechanism of IN, revealing that consistency constraints
between local and global feature statistics in feature maps are
crucial. In this paper, we explore how to enforce consistency
constraints on the style representation of converted speeches,
which has not been done before. We propose a new extension of
IN, called locality-based instance normalization (LoIN), which
does not rely on additional computational modules and only
requires implementing a random frame-selection operation be-
fore IN. This modification computes channel-wise statistics on
selected local frames rather than the original global statistics,
enhancing feature decoupling by encouraging a more uniform
distribution of styles in feature submaps. Our results show that
this lightweight modification of IN significantly improves fea-
ture decoupling, leading to enhanced performance in voice con-
version tasks.
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2. Method
2.1. Feature Disentanglement in IN

In this section, we investigate the decoupling mechanism of
IN. Based on the pronunciation mechanism, an individual’s
unique, static vocal tract structure constitutes SDI, while the
complex tonal movement determines the SII [15]. This suggests
that for short-term stationary speech, the SDI is time-invariant
static information, while the SII is time-varying [16]. We use
X ∈ RD×L for latent feature maps and C for SII, where D
stands for the channel depth and L for the frame number. Adl

denotes the feature value corresponding to the d-th channel and
l-th frame. In view of IN, the time-variant SII conforms to a
standard normal distribution, while the SDI acts as modulation
factors µd and σd, which are channel-wise mean and std. For
speech construction, it has

Adl = Cdl ∗ σd + µd; 1 ≤ d ≤ D, 1 ≤ l ≤ L

µd =
1

L

L∑

i=1

Adl; σd =

√
1

L
(Adl − µd)

2 + ε
(1)

Eq.(1) reveals the working principle of AdaIN, which is
commonly used in decoders to couple SDI and SII. When com-
pared to other coupling functions such as addition and concate-
nation, it is a more effective way to explain the independence
and complementarity of SDI and SII, which indicates that SDI
should be consistent in each subsection. When rethinking the
decoupling mechanism of IN in Eq.(2), we can deduce that the
intrinsic correlation between µd, σd, and style representation is
particularly important to obtain sufficient decoupling.

IN (A) =
A− µd (A)

σd (A)
; 1 ≤ d ≤ D (2)

In fact, the impact of L on computing the µd and σd is often
overlooked in IN. It can be observed that the styles in each
subsection are consistent, implying that µd(AL1) = µd(AL2),
where L1 and L2 correspond to the lengths of different fea-
ture submaps. However, in Fig.1, the local style representation
of the converted speech lacks this consistency, indicating that
existing methods lack constraints on local and global style con-
sistency. Given that the length of the input speech varies during
inference, ensuring local µd and σd consistency with the global
values is essential for achieving robust VC.

2.2. Robust Requirements for IN

In this section, we will investigate how IN affects the robust-
ness of the model [17, 18]. Since the static information (SDI)
is stably decoupled, the challenge lies in achieving sufficient
decoupling of the time-varying information (SII) in the con-
tent encoder (Ec). It requires 1) the decoupling is content-
independent; 2) the performance is not impacted by the vari-
able lengths of the input speeches. To address the challenges,
we divide the speech X into m segments, denoted as X =
X1, X2, ..., Xm, where Xi corresponds to the time interval
X[ti−1 : ti]. Ci represents SII in Xi. The robust decoupling
requires

Ec(X) = Ec({X1, X2, · · · , Xm})
= {Ec(X1), Ec(X2), · · · , Ec(Xm)} (3)

Considering the adaptability to variable-length segments,
the maximum likelihood solution is

Ec(X[ti−1 : ti]) = Ec(Xi)

C[ti−1 : ti] = Ci

(4)
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Figure 2: The workflow of LoIN. The statistics for each channel
are calculated from randomly selected frames.

The optimal solution suggests that the local Ci in the
submaps should be equal to the corresponding intervals in C.
In terms of IN, this can be inferred from Eq.(2) as follows.

IN(A) =
A− µ

σ
=

{
Ai − µ

σ

}
, i ∈ [1,m] (5)

{IN(Ai)} =

{
Ai − µi

σi

}
, i ∈ [1,m] (6)

To ensure that the global normalization IN(A) is equiva-
lent to the set of local normalizations IN(Ai), it is necessary
for µi = µ and σi = σ. This implies that consistency con-
straints, which maintain the consistency of both local and global
statistical characteristics, are crucial for enhancing the robust-
ness of IN decoupling.

2.3. Locality-Based Instance Normalization

To improve local consistency of style information, we propose a
simple extension to IN called LoIN. As shown in Fig.2, we ran-
domly select frames at a fixed ratio θ for each channel (vertical
axis) in the feature map A ∈ RD×L. The selected frames (un-
masked) form the feature submap Â ∈ RD×Lθ (Lθ = L ∗ θ).
For example, half of the frames are randomly selected for each
channel in Fig.2 when θ=0.5. Then normalization is performed
on A by using the local channel-wise mean µθ and standard de-
viation σθ computed on Â. The process is recorded as Eq.(7),
where R and F stand for random selection and channel-wise
feature statistical methods, respectively.

Aθ = R(A, θ);

µθ, σθ = F(Aθ)

Â =
A− µθ

σθ

(7)

LoIN is a simple yet efficient alternative to IN, which even
reduces computational cost. Due to the relative stability of in-
dividual styles, the random local feature style distribution grad-
ually converges to a stable point during the reconstruction task
training. Additionally, the random frame selection strategy can
also be seen as a data augmentation method that effectively
combats overfitting.

3. EXPERIMENTS
To confirm the effectiveness of LoIN, we conduct two types of
experiments: EA and EB. In EA, the performance of LoIN is
evaluated on a self-designed model called EAM. To minimize
the impact of other complex decoupling modules, EAM utilizes
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Figure 3: Performance comparison of EAM using LoIN and IN. The histogram represents WER(right), and the line chart represents
SAC(left).
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Figure 4: The architecture of EAM. spk emb is produced by
pretrained speaker verification system Dvector. N is cascaded
number. WN stands for weight normalization.

a simple architecture consisting of only a few fundamental units
shown in Fig.4. In EB, we replaced existing IN-related methods
with LoIN to evaluate its impact on VC performance.

3.1. Experiment Conditions

Implementation Details For EA, silent segments in each ut-
terance are trimmed, and utterances are randomly divided into
segments of L = 128. The 80-bin mel-spectrograms are used
as inputs, which are extracted like HiFiGAN [19], and then nor-
malized to 0˜1. The model is trained on VCTK [20] with 20
speakers. The batch size is set to 4. AdamW (β1 = 0.8,
β2 = 0.99, weight decay λ = 0.00015) and CosineAnneal-
ingLR (learning rate decay lrd = 0.995, initial learning rate
lr = 0.0001) are used for optimization. Only L1 loss is re-
quired in EA. For EB, all models in EB are trained on the same
dataset and strictly followed the default configuration provided
in the open source code.

3.2. Metrics

Objective Metrics To evaluate the style similarity, Speaker
Similarity Accuracy (SAC) is computed by the speaker veri-
fication system Dvector1 [21] to determine the ratio at which
the target and converted speech belong to the same speaker. To

1https://github.com/yistLin/dvector

evaluate the content consistency, Word Error Rate (WER) be-
tween the source and converted speech is measured by an au-
tomatic speech recognition system wav2vec2.02 [22]. We use
VCTK, VCC2020 [23], and LibriSpeech [24] datasets for zero-
shot test in EB. Each dataset provides 1000 source-target pairs
(only 280 for VCC2020). Only VCTK is used for EA.
Subjective Metrics Mean Opinion Score (MOS) [25] is used
to assess naturalness and similarity. The converted samples are
evaluated by 12 raters who are asked to assign a score of 1˜5.
Statistical results are reported along with 95% confidence in-
tervals (CI) to ensure the accuracy of the findings. For each
dataset, the converted speeches are divided into 4 groups: F2F,
F2M, M2F, and M2M (F for female and M for male). Our audio
samples are available on the demo page3.

4. Results and Discussion
4.1. Evaluation on EA

The experiment aims to investigate the impact of LoIN on
model performance across three distinct conditions. The EAM
series are denoted as EAM bot N θ, where bot refers to the bot-
tleneck dimension; N corresponds to the cascaded number in
Fig.4; θ means frame-selection ratio.
Evaluation on Bottleneck. Bottlenecks are crucial structures
for VC [27]. Experiments are conducted on EAM bot 3 0.5,
where bot is set to 10, 16, 36, and 80. As Fig.3(a) shows, IN and
LoIN are conducive to style decoupling compared with Batch
Normalization (BN) [28]. In particular, when bot ≥ 16, LoIN
outperforms IN by about 10% improvements in SACs, which
directly benefits from the more stable local consistency. How-
ever, when bot = 10, the superiority of LoIN has decreased.
This can be interpreted as narrow bottlenecks tending to main-
tain the consistency between submaps and the whole one while
the gains from LoIN are limited. This further reflects the impor-
tance of local representation consistency to robustness from the
side. Moreover, WERs remain consistently low, indicating that
compression does not damage content information, and most
likely, source style information is also retained.
Evaluation on Cascaded Number. Cascaded INs are com-
monly used to provide normalization instead of BN. The ex-
periments are conducted on EAM 36 N 0.5 using BN, IN, and
LoIN, where N corresponds to the cascaded number in Fig.4.
As Fig.3(b) shows, as the N increases, the SACs of IN and
LoIN steadily improve in the early stages before decreasing sub-
stantially. Compared to IN, LoIN continuously maintains ap-

2https://huggingface.co/docs/transformers/model doc/wav2vec2
3https://brightgu.github.io/LoINVC/
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Table 1: Comparison of results by applying IN and LoIN in different methods. SIM and NAT respectively represent the subjective MOS
value for evaluating the similarity and naturalness of speech.

Methods VCTK [20] VCC2020 [23] LibriSpeech [24]
SAC WER SIM NAT SAC WER SIM NAT SAC WER SIM NAT

AdaINVC [10] 0.957 0.594 3.45±0.02 3.23±0.02 0.964 0.506 3.42±0.02 2.89±0.02 0.927 0.620 3.18±0.02 2.69±0.02
AdaINVC w LoIN 0.961 0.528 3.47±0.04 3.37±0.03 0.969 0.489 3.43±0.04 3.02±0.04 0.942 0.542 3.30±0.02 2.89±0.02

AgaINVC [11] 0.860 0.532 3.22±0.05 3.21±0.02 0.857 0.545 3.27±0.02 2.81±0.02 0.837 0.573 2.87±0.03 2.72±0.03
AgaINVC w LoIN 0.928 0.478 3.41±0.02 3.41±0.02 0.902 0.526 3.39±0.04 2.95±0.02 0.891 0.512 3.10±0.01 3.01±0.04
MediumVC [26] 0.952 0.502 3.36±0.02 3.49±0.04 0.952 0.513 3.35±0.01 3.31±0.04 0.921 0.491 3.09±0.04 3.09±0.02

MediumVC w LoIN 0.972 0.482 3.43±0.02 3.51±0.02 0.968 0.473 3.47±0.04 3.36±0.04 0.957 0.422 3.28±0.02 3.18±0.04

proximately an 8% improvement in SACs. The decline in SAC
can be attributed to overfitting, as models with more parameters
are prone to overfitting when the structures are similar. Simi-
larly, the BN line also experiences a decline. It can be inferred
that as the training continues, EAM 36 9 0.5 will eventually
fall behind EAM 36 6 0.5. Additionally, even with overfitting,
LoIN maintains a slight advantage because the random strategy
is also a data augmentation method against overfitting.
Evaluation on Frame-selection Ratio. Experiments are con-
ducted on the EAM 36 3 θ using LoIN. Fig.3(c) shows that set-
ting θ = 0.5 leads to significant improvements in SACs com-
pared to IN (θ = 1). However, when θ = 0.2, the performance
of SACs slightly lags behind that of IN, suggesting that as θ de-
creases, the fluctuation of local feature statistics increases, mak-
ing it more difficult to achieve local consistency. Furthermore,
the consistency of the content remains consistently high, likely
due to the relatively wide bottleneck (bot = 36). Overall, set-
ting θ = 0.5 provides both the flexibility of style representation
and feasibility of training.

4.2. Evaluation on EB

To further confirm the validity of LoIN, comparative ex-
periments are performed on three IN-driven VC methods:
AdaINVC [10], a VAE-based model that employs dense cas-
caded INs in content encoders; AgaINVC [11], a Unet-based
model [12] where channel-wise feature statistics are directly
used as speaker styles; MediumVC [26], an autoencoder model
that employs predefined speaker style representations and 2 INs
in the content encoder. As shown in Table 1, in terms of SACs,
AdaINVC fails to obtain the significant boost. We observe that
the number of cascaded INs in AdaINVC had reached 11 (with-
out overfitting), leaving little room for further improvement in
similarity. On the other hand, AgaINVC benefited more from
LoIN due to its unique Unet structure, where feature statistics
computed in LoIN are directly used as style representations in
a feed-forward manner. It shows the more accurate the style
representation is, the more significant gains on performance.

A point worth considering is the steady improvement in
WERs by LoIN, which has not been observed in EAM. For
control experiments on EAM, it requires lightweight structure
to provide more space for performance improvement. There-
fore, the feature decoupling of EAM is not sufficient, as con-
tent embeddings often contain residual source speaker style in-
formation due to the relatively wide bottleneck in the content
encoder (bot=36). This makes the local consistency brought
by LoIN more conducive to the elimination of style informa-
tion. However, for the present three methods, to obtain higher
speaker similarity, content embedding tends to suffer from over-
compression (bot=4 in AgaINVC). Therefore, the more accu-
rate style representation computed in LoIN does not continue
to improve style significantly but rather better maintains con-
tent information. In all, the differences depend on the inherent

0
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0.06

AGAINVC ADAINVC MediumVC EAM
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Figure 5: The standard deviation of the frame-wise means in
latent feature maps with extensive test samples.

decoupling mechanism of IN.

4.3. Quantification on Local Consistency

Fig.5 provides a visual representation of the quantification of
local consistency in four different methods. The test samples
used in this analysis are taken from VCC2020, consisting of 4
females and 4 males, with each speaker providing 10 utterances.
For each method, feature maps A ∈ R128×128 (D × L) are
used, where each map corresponds to a segment with a length
of L = 128. To represent the local statistics, the means of
A[:, 0 : X] are computed, with X taking on the values of 16,
32, ..., and 128, respectively. The standard deviation of these
means is then plotted in Fig.5 to reflect the stability of local
consistency. Smaller values indicate better consistency.

5. Conclusion
We conduct an investigation into the shortcomings of IN when
it comes to decoupling speech features. Our findings suggest
that the inconsistency between local and global channel feature
statistics can lead to inadequate decoupling. To address it, we
propose LoIN, which incorporates consistency constraints by
utilizing randomly selected local feature statistics to normalize
feature maps during training, rather than relying on global fea-
ture maps like IN. The experiments show that LoIN is a straight-
forward yet powerful module that can achieve robust content-
style tradeoffs. We anticipate that future research will concen-
trate on exploring the consistency of speech styles further.

6. Acknowledgements
This work was supported by National Key Technology Research
and Development Program under 2020AAA0140000.

5474



7. References
[1] C.-C. Hsu, H.-T. Hwang, Y.-C. Wu, Y. Tsao, and H.-M. Wang,

“Voice conversion from non-parallel corpora using variational
auto-encoder,” in 2016 Asia-Pacific Signal and Information Pro-
cessing Association Annual Summit and Conference (APSIPA).
IEEE, 2016, pp. 1–6.

[2] Y. Y. Lin, C.-M. Chien, J.-H. Lin, H.-y. Lee, and L.-s. Lee,
“Fragmentvc: Any-to-any voice conversion by end-to-end extract-
ing and fusing fine-grained voice fragments with attention,” in
ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2021, pp. 5939–
5943.

[3] H. Kameoka, T. Kaneko, K. Tanaka, and N. Hojo, “Acvae-vc:
Non-parallel many-to-many voice conversion with auxiliary clas-
sifier variational autoencoder,” arXiv preprint arXiv:1808.05092,
2018.

[4] Y. Gu, X. Zhao, X. Yi, and J. Xiao, “Voice conversion using learn-
able similarity-guided masked autoencoder,” in Digital Forensics
and Watermarking: 21st International Workshop, IWDW 2022,
Guilin, China, November 18-19, 2022, Revised Selected Papers.
Springer, 2023, pp. 53–67.

[5] T. Kaneko, H. Kameoka, K. Tanaka, and N. Hojo, “Cyclegan-
vc3: Examining and improving cyclegan-vcs for mel-spectrogram
conversion,” arXiv preprint arXiv:2010.11672, 2020.

[6] H. Kameoka, T. Kaneko, K. Tanaka, and N. Hojo, “Stargan-vc:
Non-parallel many-to-many voice conversion using star genera-
tive adversarial networks,” in 2018 IEEE Spoken Language Tech-
nology Workshop (SLT). IEEE, 2018, pp. 266–273.

[7] S.-H. Lee, J.-H. Kim, H. Chung, and S.-W. Lee, “Voicemixer:
Adversarial voice style mixup,” Advances in Neural Information
Processing Systems, vol. 34, pp. 294–308, 2021.

[8] Y. A. Li, A. Zare, and N. Mesgarani, “Starganv2-vc: A diverse,
unsupervised, non-parallel framework for natural-sounding voice
conversion,” arXiv preprint arXiv:2107.10394, 2021.

[9] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normaliza-
tion: The missing ingredient for fast stylization,” arXiv preprint
arXiv:1607.08022, 2016.

[10] J.-c. Chou, C.-c. Yeh, and H.-y. Lee, “One-shot voice conversion
by separating speaker and content representations with instance
normalization,” arXiv preprint arXiv:1904.05742, 2019.

[11] Y.-H. Chen, D.-Y. Wu, T.-H. Wu, and H.-y. Lee, “Again-vc: A
one-shot voice conversion using activation guidance and adap-
tive instance normalization,” in ICASSP 2021-2021 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2021, pp. 5954–5958.

[12] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted
intervention. Springer, 2015, pp. 234–241.

[13] X. Huang and S. Belongie, “Arbitrary style transfer in real-time
with adaptive instance normalization,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 1501–
1510.

[14] M. Chen, Y. Shi, and T. Hain, “Towards low-resource stargan
voice conversion using weight adaptive instance normalization,”
in ICASSP 2021-2021 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp.
5949–5953.

[15] T. Dutoit, An introduction to text-to-speech synthesis. Springer
Science & Business Media, 1997, vol. 3.

[16] B. Sisman, J. Yamagishi, S. King, and H. Li, “An overview of
voice conversion and its challenges: From statistical modeling to
deep learning,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 29, pp. 132–157, 2020.

[17] R. Aihara, R. Takashima, T. Takiguchi, and Y. Ariki, “Noise-
robust voice conversion based on sparse spectral mapping using
non-negative matrix factorization,” IEICE TRANSACTIONS on
Information and Systems, vol. 97, no. 6, pp. 1411–1418, 2014.

[18] J. Lian, C. Zhang, and D. Yu, “Robust disentangled variational
speech representation learning for zero-shot voice conversion,” in
ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2022, pp. 6572–
6576.

[19] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial net-
works for efficient and high fidelity speech synthesis,” Advances
in Neural Information Processing Systems, vol. 33, pp. 17 022–
17 033, 2020.

[20] C. Veaux, J. Yamagishi, K. MacDonald et al., Superseded-cstr
vctk corpus: English multi-speaker corpus for cstr voice cloning
toolkit. University of Edinburgh. The Centre for Speech Tech-
nology Research (CSTR), 1997.

[21] L. Wan, Q. Wang, A. Papir, and I. L. Moreno, “Generalized
end-to-end loss for speaker verification,” in 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 4879–4883.

[22] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec
2.0: A framework for self-supervised learning of speech repre-
sentations,” Advances in Neural Information Processing Systems,
vol. 33, pp. 12 449–12 460, 2020.

[23] Y. Zhao, W.-C. Huang, X. Tian, J. Yamagishi, R. K. Das, T. Kin-
nunen, Z. Ling, and T. Toda, “Voice conversion challenge 2020:
Intra-lingual semi-parallel and cross-lingual voice conversion,”
arXiv preprint arXiv:2008.12527, 2020.

[24] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in 2015 IEEE international conference on acoustics, speech and
signal processing (ICASSP). IEEE, 2015, pp. 5206–5210.

[25] I. Rec, “P. 800.1, mean opinion score (mos) terminology,” Inter-
national Telecommunication Union, Geneva, 2006.

[26] Y. Gu, Z. Zhang, X. Yi, and X. Zhao, “Mediumvc: Any-to-any
voice conversion using synthetic specific-speaker speeches as in-
termedium features,” arXiv preprint arXiv:2110.02500, 2021.

[27] K. Qian, Y. Zhang, S. Chang, X. Yang, and M. Hasegawa-
Johnson, “Autovc: Zero-shot voice style transfer with only au-
toencoder loss,” in International Conference on Machine Learn-
ing. PMLR, 2019, pp. 5210–5219.

[28] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Interna-
tional conference on machine learning. pmlr, 2015, pp. 448–456.

5475


