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Abstract
Multiple sclerosis (MS) is a neuroinflammatory disease that
affects millions of people worldwide. Since dysarthria is promi-
nent in people with MS (pwMS), this paper aims to identify
acoustic features that differ between people with MS and healthy
controls (HC). Additionally, we develop automatic classification
methods to distinguish between pwMS and HC. In this work, we
present a new dataset of a German-speaking cohort which con-
tains 39 patients with low disability of relapsing MS and 16 HC.
Findings suggest that certain interpretable speech features could
be useful in diagnosing MS, and that machine learning methods
could potentially support fast and unobtrusive screening in clini-
cal practice. The study emphasises the importance of analysing
free speech compared to read speech.
Index Terms: multiple sclerosis, speech analysis, dysarthria,
German language, machine learning

1. Introduction
Multiple sclerosis (MS) is a neuroinflammatory disease that
affects a population of around 2.8 million people worldwide [1].
In the course of this disease, the myelin sheath of the glia cells is
getting attacked by the patient’s immune system. The resulting
lesions in the brain and spinal cord affect a variety of functions
of the central nervous system.

Relapsing MS (RMS) is the most common course of MS
with a prevalence of around 80%, and consists of alternating
periods of asymptomatic and symptomatic phases. This course
could transition to secondary progressive MS (SPMS) [2, 3],
a stage in which symptoms worsen gradually until complete
disability.

Among others, roughly 45% of affected patients suffer from
dysarthria [4] – making it the most common speech disorder
among people with MS (pwMS). Dysarthria is reported to be
one of the earliest symptoms of the disease in pwMS [5], and is
a mix of ataxic and spastic speech characteristics [6].

In this paper, we describe a unique dataset with speech of
fully ambulatory pwMS in the German language. The aim is
to assess whether the voice can be used to reliably screen for
pwMS with low disability. To do so, we employ three well-
known speech tasks 1) to identify acoustic features that differ
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significantly between pwMS and healthy control (HC), and 2) to
develop supervised machine learning (ML) methods to distin-
guish pwMS against HC.

Speech analysis for healthcare purposes yields the promise
to enable fast and unobtrusive screening [7]. Small perturbations
in the voice have been shown to correlate with various neuro-
logical disorders [8]. The research community has approached
the quantification of neurological disorders with various chal-
lenges to assess the current state-of-the-art. Some exemplary
approaches were to describe Parkinson’s disease (PD) [9] and
Alzheimer’s disease (AD) [10].

In clinical practice, an initial screening system that sup-
plements clinical routine shows great promise to support over-
burdened clinicians. This is because diagnosis encompasses
multiple modalities, such as magnetic resonance imaging (MRI)
and laboratory diagnostics [11]. In the context of MS, even
though the disease manifests itself through specific brain lesions,
the diagnosis usually depends on ruling out other diseases, since
there are no specific screening tests [12].

1.1. Related work

Several studies have investigated speech changes in pwMS.
Acoustic features that have been identified in pwMS are, among
others, a loss of speech intensity and pitch control, vocal instabil-
ity, higher jitter and shimmer, slower speech rate, compromised
intelligibility, reduced breath support, as well as a decrease of
the vowel space area [4, 8, 13]. An increase of harmonics-to-
noise-ratio (HNR) has also been reported [13], which suggests
a higher articulation effort. The maximum slope of the second
formant (F2) is particularly affected in pwMS and is a good indi-
cator to distinguish between mild and moderate dysarthria [14].
Studies have also concluded that dysarthria in pwMS is predom-
inantly mild [15]. These findings suggest that certain speech
features could be useful in diagnosing MS.

Further, the frequency and severity of dysarthria are asso-
ciated with an expanded disability status scale (EDSS) score
higher than 4 [16], even though speech impairment is present
in all the disease stages [16]. The EDSS score depends on
seven different functional systems: visual, brain-stem, pyrami-
dal, cerebellar, sensory, bowel and bladder, and cerebral. An
EDSS below 4 refers to patients who are ambulatory. An EDSS
between 4 and 5 indicates a limited walking range. Finally, an
EDSS of up to 8 relates to a requirement for walking assistance.
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Table 1: Overview over the participants’ metadata across the
data partitions.

All RRMS HC

Whole dataset
Participants 55 39 16

Gender 39F, 16M 29F, 10M 10F, 6M

Age 36.62±10.5 37.26±10.38 35.06±10.99

EDSS - 1.08±1.0 -

Train set

Participants 44 32 12

Gender 29F, 15M 22F, 10M 7F, 5M

Age 37.2±10.31 38.47±10.27 33.83±10.07

EDSS - 1.2±1.0 -

Test set

Participants 11 7 4

Gender 10F, 1M 7F, 0M 3F, 1M

Age 34.27±11.45 31.7±19.67 38.75±14.41

EDSS - 0.81±1.19 -

Compared to other neurodegenerative diseases, such as AD
and PD, automatic classification of MS patients from a healthy
cohort using ML methods appears to be less explored in the lit-
erature. Rusz et al. 2018 reported 78% accuracy between asymp-
tomatic pwMS and control speakers using a linear support vector
machine (SVM) [17]. Gosztolya et al. 2022 used deep neural
network (DNN) embeddings to classify some specific non-word
utterances of pwMS and achieved the accuracy of 90% [18].

This contribution is divided as follows: in section 2, we
describe the dataset employed and the experiment design. The
outcomes of these experiments are presented in section 3 and
put into context in section 4. Section 5 provides the conclusions.

2. Materials and Methods
2.1. Data

Data was collected at the Department of Neurology, Inselspital,
Bern, Switzerland and the University of Bern, Switzerland. This
observational clinical study was approved by the ethics commit-
tee of the Canton of Bern, Switzerland (approval no. 2021-02423,
ClinicalTrials.gov identifier: NCT05561621), which unfortu-
nately does not permit the publication of the recorded data. All
participants provided their written informed consent.

The recording setup consisted of a laptop computer and a mi-
crophone system: an AKG 555L headset condenser microphone
and a PreSonus Studio 18 audio interface for A/D conversion.
The native sampling rate was 44,100 Hz. The framework em-
ployed for voice recording was AI SoundLab1 [19], which is a
web app, in which each patient could navigate through a voice
recording session under the supervision of the study nurse. The
voice recording session comprised several speech tasks, includ-
ing verbal responses of the symbol digit modalities test (SDMT),
sustained utterances, and diadochokinesis. Further included
were free speech tasks and read speech tasks: the text passages
‘North Wind and the Sun (NWS)’ (German version) [20] and the
‘Buttergeschichte’, which are both widely used in the field of

1aisoundlab.audeering.com, powered by audEERING GmbH

phonetics). Each session took around 60 minutes.
For brevity, within the scope of this paper, we addressed

the following three speech tasks: the picture description task
(PDT) of the Western Aphasia Battery – Revised [21], the NWS
(read twice during each session: once at the very beginning
and once at the very end), and all read speech tasks combined
(NWS and Buttergeschichte). We selected these tasks since they
are commonly used in similar neurodegenerative diseases and
contain more speech segments, which can be useful for ML-
based analysis.

The dataset consisted of 55 speakers, 39 pwMS, and 16 HC
participants without any known neurological disorders. The
inclusion criteria for the MS patients were as follows: 1) diag-
nosis with relapsing MS (RMS) due to its prominence, 2) age
range 18-60 years, 3) ambulatory patients with low disability
(EDSS score lower than four), 4) the capability of written in-
formed consent, and 5) fluency in the German language.

2.2. Data processing

For data processing, audio files were downsampled to 16 kHz and
segmented by applying a voice activity detection (VAD) algo-
rithm2, which due to license restrictions is not available as open
source, but its underlying architecture is based on the Speech &
Music Interpretation by Large-space Extraction (openSMILE)
interface. The minimum turn length was 0.76 s, the maximum
turn length 6.0 s, the length of speech until a segment start was
detected was set to 0.15 s, and the length of non-speech, until
a segment end was detected, was set to 0.25 s. Manual audio
quality checks were carried out before analyses. As a variable
for the experiments, the signal volume was loudness-normalised
with -24 dB LUFS.

We defined a fixed, hold-out test set, which was speaker-
disjunct from the train set. We employ the variables sex and
age to stratify each split. The test set corresponds to 20% of
the data. An algorithm, that spawned 30 different combinations,
was used to evaluate the quality of each split using the Jensen-
Shannon divergence. The distance was measured between the
target (MS/HC), sex, and age distribution in the train and test
sets. The test split with the lowest distance from the train set was
selected. The resulting test set has an information radius of 0.08.
This approach was implemented to ensure that the test set was
as representative as possible of the train set. Table 1 respec-
tively summarises the participants’ metadata across the different
dataset partitions. Using the VAD algorithm, the following num-
ber of speech segments was obtained: a) PDT: 652 segments
(train: 528, test: 124); b) read speech tasks: 2,348 segments
(train: 1,874, test: 474); c) NWS: 1,133 segments (train: 899,
test: 234).

2.3. Methods

The extended Geneva minimalistic acoustic parameter set
(eGeMAPS) [22] was extracted using the openSMILE feature
extraction tool by the audEERING GmbH [23]. It contains
88 acoustic features and previous work has reported promising
results in speech disorders [24]. Speech summary statistics of the
eGeMAPS feature set were extracted. Summary statistics can be
understood as aggregated information over an entire utterance.
Examples of these are the mean, median, standard deviation (std),
and skewness [22].

The statistical method employed for an exploratory fea-
ture analysis was a two-tailed Mann-Whitney U test, since val-

2powered by audEERING GmbH
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Table 2: Interpretable, significant acoustic features to distinguish MS from HC in the picture description task (PDT).

Features Description Interpretation r UMS p-value

F1 amplitude LogRel Mean F1 amplitude relative to amplitude of
first harmonic

Voice excitation
strength

-0.40 9.025 < 0.001

F2 amplitude LogRel Mean F2 amplitude relative to amplitude of
first harmonic

Voice excitation
strength

-0.39 7.65 < 0.001

Unvoiced Segment Length Mean of unvoiced segment lengths Phonatory control 0.38 6.26 < 0.02

Spectral Flux std Standard deviation of the distance between
spectra of adjacent frames

Speech rate varia-
tion and hesitations

0.28 4.78 < 0.05

Loudness peaks per second Number of loudness peaks per second Speech rate -0.27 4.78 < 0.05

ues were not normally distributed. The significance level was
set to 0.05. To identify significant features, we followed the
methodology used in Bartl-Pokorny et al. 2021 [25] and calcu-
lated the correlation effect size as the absolute value of the
Pearson product-moment correlation coefficient (r). For calcu-
lating r, we encoded HC as 0 and MS as 1. This way, positive
correlations can be interpreted as higher feature values for MS.
Those features, which differ significantly, are ranked based on
effect size and identified as ‘relevant’.

We employ support vector machine (SVM), k-nearest neigh-
bours (KNN), and random forest (RF) models through the
scikit-learn [26] Python package. All models are optimised
using grid search. For SVM, we optimise the cost parameter
[3,2.5, 2, 1.5, 1, 0.5, 0.1, 0.005, 0.05, 0.01, 0.001, 0.0001] and
we selected a linear kernel to be consistent with related work [9].
Parameters optimised for RF are the number of estimators [50,
100, 300, 500, 800, 1000, 3000], the criterion [‘gini’, ‘entropy’],
the minimum samples per split [2, 3], and bootstrapping [True,
False]. For KNN, we optimise the leaf size in a range from 20
to 40, the number of neighbours from 1 to 15, and the power
parameter [2, 3]. For all models, parameters are optimised on the
train set using a leave-one-speaker-out (LOSO) cross-validation
method. With the optimal hyperparameters, the respective model
is fitted on the entire train set. The best performing model is then
evaluated on the test set.

For evaluation, due to class imbalance, we report unweighted
average recall (UAR). Area under the curve (AUC) and av-
erage precision score (APS) are reported, and and the best-
performing receiver operating characteristic (ROC) curve is
presented. These metrics account for false positives and false
negatives.

3. Results
3.1. Feature Analysis

Statistical analyses were performed on the train set for each
speech task. Within the train set, 32 MS and twelve HC speakers
are included (see Table 1). We found ten features for the PDT
and one feature (arithmetic mean for F1 bandwidth) for the NWS
for read speech respectively to distinguish between MS and HC.
All of these features have an effect size higher than 0.20.

Due to space limitations, from the identified features the
top 5 features are interpreted and discussed in this paper. For
interpretability, the real r is reported. Table 2 shows the top

Table 3: Performance of the predictive modelling approaches.
Unweighted average recall (UAR); picture description task
(PDT); North Wind and the Sun (NWS); support vector ma-
chine (SVM); k-nearest neighbours (KNN); random forest (RF)
receiver operating characteristic (ROC) area under the curve
(AUC); average precision score (APS).

Task Model UAR ROC AUC AP

PDT SVM 71.7% 76.0% 65.6%

KNN 65.4% 70.2% 62.9%

RF 56.8% 69.1% 61.7%

Read SVM 59.9% 62.8% 51.4%

Speech KNN 53.5% 58.7% 49.2%

RF 50.0% 77.3% 65.8%

NWS SVM 56.9% 61.3% 50.0%

KNN 60.6% 68.9% 59.1%

RF 55.0% 68.7% 60.0%

five features obtained in the PDT. We portray the features for
this speech task in detail since it is one of the most commonly
used ones in similar neurodegenerative diseases such as AD [27].
The top five features for PDT are: arithmetic mean of F1 relative
amplitude and F2 relative amplitude, unvoiced segment lengths,
spectral flux std normalised by mean, and loudness peaks per
second. In line with previous work, we expect to find that pwMS
present a more unstable phonatory control, lower voice excitation
strength, decrease in loudness, and lower speech rate compared
to healthy speech. Table 2 presents the feature description and
interpretation, r value, U statistic corresponding with the MS
sample, and p-value.

3.2. Predictive Modelling

Table 3 shows the results of the predictive modelling approaches.
Using all eGeMAPS features, the best-performing model reaches
an UAR of 71.1% using a SVM on the PDT. NWS performance
is higher with KNN. Figure 1 depicts the ROC curve of the
model with the highest UAR. Due to SVM obtaining the highest
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Table 4: Performance of the predictive modelling approaches
when only regarding the significantly correlating features de-
scribed in section 3.1. Abbreviations as in Table 3.

Task Model UAR ROC AUC AP

PDT SVM 67.2% 73.2% 60.6%

Read Speech SVM 65.8% 74.1% 61.7%

NWS SVM 64.3% 71.4% 59.0%
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Figure 1: Receiver operating characteristic (ROC) curves of
the best-performing model for the picture description task.
71.7% UAR, see Table 3. Green portrays the ROC curve of
the model on all samples of the train partition and blue the one
on all samples in the test partition.

performance in Table 3, we investigate the significant features
identified in section 3.1. using only SVM. In Table 4, models
with the subset of significant features described in section 3.1
were evaluated.

4. Discussion
In this study, we analysed acoustic features and ML models
to distinguish between pwMS and HC when eliciting the PDT,
NWS, and a combination of the NWS and the Buttergeschichte
task. For initial screening, a dataset representing a cohort of
patients that would be encountered in an ambulatory setting for
initial diagnosis, is important. Therefore, we recruited a cohort
of pwMS with a particularly low disability score (Table 1).

Feature interpretability is key in speech analysis for health-
care, since it is needed for a potential clinical application, where
patients and clinicians need to understand the speech changes
in a particular disorder or disease. In this case, eGeMAPS is
an adequate feature set, since it was curated by specialists in
psychology, linguistics, medicine, and signal engineering [22].

Therefore, from the top five features presented in Table 2,
we found that F1 and F2 relative amplitude are lower for MS
speech, which suggests that pwMS present a lower voice exci-

tation strength than the HC. Due to muscle weakness being a
common condition in MS, this would be the expected behaviour
of MS speech. Furthermore, the lengths of unvoiced segments
are higher in MS speech compared to healthy speech. This
finding suggests that pwMS present lower phonatory control
when switching from unvoicing to voicing. Nonetheless, a more
indicative result could be found if the speech task would be
more controlled, for example, a sustained utterance, as done
in [25]. The std of spectral flux shows that pwMS have a higher
speech rate variation, which suggests, among other things, that
MS speech contains more filled pauses and unsystematic speech
rate changes than HC. This finding is of special interest when
regarding the PDT, since it hints at a higher cognitive load. This
finding aligns with the fact that cognitive impairment is observed
in MS even at early stages of the disease [28]. The std of spectral
flux can also indicate varying amount of coarticulation. This
might be explained by an increased proportion of articulatory
target undershoot for pwMS. The final feature, loudness peaks
per second, indicates a lower speech rate: results hint that MS
presents lower speech rate and higher speech variation.

As for the ML experiments, models based on SVMs to dis-
tinguish pwMS and HC perform the best and reach an UAR of
71.7% for the PDT. This is slightly lower than the 78% accuracy,
which was reported by [17]. Lower performance reported in
our paper might be attributable to the use of diadochokinetic
data in [17]. When regarding the subset of significant features
(Table 4), performance decreased for the three speech tasks. This
decline in performance might be due to excessively constraining
the function space of the ML models.

Moreover, the PDT performed best across the ML models.
This result is consistent with previous work for other neurodegen-
erative diseases, in which the PDT was described as a valuable
clinical tool [27, 29]. Thus, our findings suggest that the PDT,
a free speech task, better embodies speech differences between
pwMS and HC than the employed read speech tasks.

5. Conclusions
In this study, we demonstrated that speech analysis can be used
as a tool to distinguish between the speech of pwMS with low
disability and HC. By using acoustic features, we reached an
UAR of up to 71.1%. Feature interpretation of low disability
MS speech is consistent with related work and dysarthric speech
characteristics. Therefore, this paper can be considered as a step
towards an assistive tool for clinicians, in which acoustic features
could be used as additional tools to support MS diagnosis.

Future work will focus on including further participants and
longitudinal data collection for monitoring MS progression. In
order to have an initial screening tool based on speech analysis,
it is important to investigate the difference between patients
with low and high EDSS scores and to further investigate model
interpretability to understand resulting predictions. It will also
be valuable to identify specific features for pwMS in the German
language and across multiple languages. Future work should
also systematically study speech characteristics of different MS
types.
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