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Abstract
In this paper, we focus on Whisper [1], a recent automatic
speech recognition model trained with a massive 680k hour la-
beled speech corpus recorded in diverse conditions. We first
show an interesting finding that while Whisper is very robust
against real-world background sounds (e.g., music), its au-
dio representation is actually not noise-invariant, but is instead
highly correlated to non-speech sounds, indicating that Whis-
per recognizes speech conditioned on the noise type. With this
finding, we build a unified audio tagging and speech recognition
model Whisper-AT by freezing the backbone of Whisper, and
training a lightweight audio tagging model on top of it. With
<1% extra computational cost, Whisper-AT can recognize au-
dio events, in addition to spoken text, in a single forward pass.

1. Introduction
In recent years, significant progress has been made in advanc-
ing automatic speech recognition (ASR) performance. Specifi-
cally, self-supervised learning schemes such as wav2vec2.0 [2]
and Hubert [3] have achieved great success, requiring minimal
labeled training data. However, since the public model check-
points are trained with clean speech data (e.g., Librispeech [4]
or Libri-light [5]), their robustness in real-world environments
is limited. To improve noise robustness, the Whisper [1] model
uses 680K hours of labeled speech collected from the Internet
with diverse environments and recording setups as the training
data, and reports better robustness over existing ASR models.

In this paper, we first show a counter-intuitive finding that
while Whisper is robust against background sounds (noise for
ASR), its audio representation is actually not noise-invariant,
but instead encodes rich information of non-speech background
sounds (shown in Figure 1 and discussed in detail in Sec-
tion 3), indicating that the Whisper model does not learn a
noise-invariant representation, but encodes the noise type, and
then recognize speech conditioned on the noise type.

One exciting application of the above finding is that we can
build a unified model for ASR and Audio Tagging (i.e., recog-
nize general audio events) based on Whisper since it 1) is robust
to noise, and 2) encodes rich general audio event information.
Currently, ASR and audio tagging (AT) models are typically
performed independently. In many applications such as video
transcribing, voice assistants, and hearing aid systems, we de-
sire to get both spoken text and acoustic scene analysis from
the audio, but running two systems is computationally expen-
sive. In this work, we show that with <1% extra computational
cost, we can make Whisper recognizes audio events together
with spoken text in a single forward pass. Our model achieves
an mAP of 41.5 on AudioSet, which is slightly worse than stan-
dalone AT models, but is nevertheless over 40× faster.
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Figure 1: Surprisingly, the noise robustness of an ASR model
correlates positively to the amount of general background sound
(noise for ASR) information encoded in their intermediate rep-
resentations. In the upper figure, we show Whisper is noticeably
more robust (smaller word error rate increase) when speech
(Librispeech) is contaminated with an increasing amount of
background sounds from ESC-50 [6]. In the lower figure,
we show the intermediate representations of Whisper lead to
the best linear probing sound classification accuracy on the
same ESC-50 data, indicating Whisper encodes most back-
ground sound information. Unlike other models, Whisper en-
codes background sound information even in its deepest layer.
PR=self-supervised pretrained; FT=PR and fine-tuned model.

Related Work: To the best of our knowledge, we are the first
to report that a robust ASR actually learns a noise-variant rep-
resentation; most previous work focuses on noise-invariant rep-
resentations [7, 8, 9, 10, 11]. For ASR and AT model unifica-
tion, the closest works are [12, 13, 14, 15]. In [12], a unified
keyword spotting and audio tagging model is proposed, how-
ever, keyword spotting only considers up to 35 words and is a
much simpler task than the large-vocabulary continuous speech
recognition task we are targeting. In [13, 14], joint ASR and
audio tagging/captioning training frameworks are proposed, but
in this work, we show that Whisper already encodes rich gen-
eral audio information even without any explicit audio tagging
training. In [15], ASR representations are tested for the audio
tagging task, but the overall performance is unsatisfactory.

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

2798 10.21437/Interspeech.2023-2193



2. Whisper Robust ASR Model
Whisper [1] is a recently proposed robust ASR model that fea-
tures a standard Transformer [16]-based encoder-decoder archi-
tecture. The main novelty of Whisper is not its architecture, but
its training data and training scheme. Specifically, the 680K-
hour non-public training set contains audio-transcript pairs col-
lected from the Internet with a very broad distribution of audio
from many different environments, recording setups, speakers,
and languages. Significant effort was made to filter out low-
quality data. Compared with the most commonly used Lib-
rispeech (960 hours) and Libri-light (60K hours) data that are
collected from audiobooks, the Whisper training data is much
larger and more diverse, but also has noisy labels. We identify
this as the main factor that differentiates Whisper from existing
ASR models. During Whisper training, only text transcripts are
used as supervision signals, no audio event labels are given. In
this paper, we use the Whisper-Large model unless otherwise
stated. Since Whisper is an encoder-decoder model, we only
use the audio encoder part of Whisper for audio tagging, which
consists of 32 Transformer layers with a dimension of 1280.

3. Noise-Robust ASR Learns
Noise-Variant Representations

Thanks to the diverse 680K-hour training data, Whisper has
been shown to be more robust under white and pub noise than its
counterparts [1]. We confirmed this point by evaluating Whis-
per and other state-of-the-art ASR models on Librispeech clean
speech data that were contaminated with ESC-50 [6] environ-
mental sounds with various signal-to-noise ratios (SNRs). As
shown in Figure 1 (upper), Whisper has superior performance.

What is the noise-robust mechanism of Whisper? It is com-
monly believed that the representation of a robust ASR model
should be noise-invariant, and researchers often set noise-
invariance as an explicit inductive bias for robust ASR (e.g.,
in [7, 8, 9, 10, 11]). However, we, perhaps surprisingly, found
that Whisper’s representation is actually noise-variant and en-
codes rich non-speech background sound information.

Specifically, we froze the entire Whisper model and input
audio samples from the ESC-50 environment sound dataset [6].
We then extracted the intermediate representation from every
layer of Whisper and trained a linear layer on top of it to classify
the sound class from 50 possible classes. If Whisper did not en-
code background sound information, or its representations were
invariant to background sounds, the sound classification result
would be low, and vice versa. As shown in Figure 1 (lower), the
Whisper representations had the best ESC-50 sound classifica-
tion accuracy compared to other SOTA ASR models, indicating
that its representation encodes most background sound infor-
mation. In addition, for all other ASR models, representations
from deeper layers led to lower sound classification accuracies,
showing that the models are learning to encode speech informa-
tion, and ignore background sound information. Whisper does
not have this behavior, since representations from deeper layers
also encode background sound information.

The fact that Whisper is noise-robust while its representa-
tion encodes rich background sound information reveals that the
robustness mechanism of Whisper is different from other ASR
models (including wav2vec2-robust [17]). Instead of learning
a noise-invariant representation, it first encodes the background
sound and then transcribes text conditioned on the type of noise.
We confirmed this point by further checking the class-wise rela-
tionship between Whisper’s robustness against a specific back-
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Figure 2: Class-wise analysis of the relationship between Whis-
per’s robustness against a specific background sound class and
its potential ability to recognize the sound. We measure Whisper
robustness by its WER increase from clean speech (20dB SNR)
to speech contaminated by the specific background sound from
ESC-50 (-10dB SNR). The lower the WER increase, the more
robust the model (Y-axis). We estimate the potential ability of
Whisper to recognize the sound by training a linear layer on top
of the Whisper encoder’s last-layer representation for the sound
classification task on the same ESC-50 dataset (without speech
mixed-in, the Whisper model is frozen) and show the class-wise
F1-score. The higher the F1-score, the better Whisper can po-
tentially recognize the sound class (X-axis). Blue dashed line:
we observe a positive correlation between Whisper’s robustness
against a background sound type and its potential ability to rec-
ognize it. Blue shading: we observe most sound classes lie in
the right-bottom triangle area, indicating that Whisper is not
robust to the type of sound if it cannot recognize the sound type.
Right-bottom outliers: there are some background sounds that
Whisper can potentially recognize but is not robust to, which is
expected as some noises heavily overlap with the speech and are
impossible to be robust to. In short, we find the potential ability
to recognize a sound type is a necessary but not sufficient con-
dition for Whisper to be robust to it.

ground sound class, and its potential ability to recognize the
sound class in Figure 2. We found there is indeed a positive cor-
relation between them. Compared to noise-aware training [18]
that requires manually inputting noise type to the model, Whis-
per learns it directly from its massive 680K hour training set.

Note that the discussion in this section is mostly based
on Whisper, and our experiments do not indicate that noise-
invariance does not help noise-robust ASR, nor that a noise-
robust ASR’s representation should be noise-variant. In fact, we
believe encouraging noise-invariant representations [7, 8, 9, 10,
11] is a practical solution in self-supervised learning or small
data cases. Whisper training requires industry-level computa-
tional resources and is expensive. What we hope to convey is
that a noise-robust ASR model does not have to learn a noise-
invariant representation, and that there exist other ways to be
noise-robust - a noise-conditioned model like Whisper can, and
indeed does, work very well.
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4. Unifying ASR and Audio Tagging Model
One exciting application of the finding in Section 3 is that we
are able to build a unified model for ASR and Audio Tagging
based on Whisper to recognize spoken text and background
sounds (e.g., music, horn, etc) simultaneously, which is highly
desirable in applications such as video transcribing, voice assis-
tants, and hearing aid systems. Whisper is ideal as a backbone
for such a unified model because 1) it is robust to background
sounds, and 2) its intermediate representations encode rich gen-
eral audio event information, which serves as a solid base for
audio tagging. Nonetheless, the original Whisper does not out-
put sound labels, so we need to train a model on top of Whisper
intermediate representations to enable it to predict a sound class.
Note that we intentionally do not modify the original weights of
the Whisper model, but instead add new audio tagging layers on
top of it so that the Whisper ASR ability is not changed and text
and audio labels can be generated in a single forward pass. We
call this unified ASR and Audio Tagging model Whisper-AT.

In previous sections, we applied a basic linear layer on the
representation of a single layer for probing purposes. In this
section, we discuss more advanced methods that lead to better
audio tagging performance.

1. Last-MLP: The most basic method, we first apply a tempo-
ral mean pooling over the last layer representation of Whisper
and then apply a linear layer to map it to the prediction.

2. WA-MLP: As shown in Figure 3, we find the last layer is
not optimal for all sound classes. Thus we weighted average
(WA) the representations from all layers and set the weight to
be learnable before temporal mean pooling and linear layer,
so this approach leverages representations from all layers.

3. WA-Tr: Temporal mean pooling removes all temporal de-
tails, and a single linear layer may be too simple for audio
tagging. Therefore, we replace the linear layer of WA-MLP
with a single-head temporal Transformer layer for this model.

4. TL-Tr: Time and layer-wise Transformer (our main method,
shown in Figure 4). Though weighted averaging leverage
representation of all layers, all sound classes use a fixed set
of weights. In Figure 3, we show that different sound classes
achieve their best performance using different representation
layers. Therefore, ideally, each class should have its own set
of weights. This motivates us to build an attention mecha-
nism over the layers. Specifically, we apply another layer-
wise Transformer to the output of the temporal Transformer.

Efficient Design: As the original goal of Whisper-AT is being
more computationally efficient than two independent ASR and
AT models, we aim to minimize the extra cost for audio tagging.
Introducing a new Transformer layer in WA-Tr and TL-Tr is
relatively expensive. Consider the complexity of Transformer
is O(d2n + dn2), where d is the dimension and n is the input
length of the Transformer, for each 10-second input audio, the
representations of each Whisper layer is in the shape of (n=500,
d=1280). If the temporal and layer Transformer have the same
n and d as Whisper, their computational cost is not negligible.
Therefore, as illustrated in Figure 4, we propose the following
efficient design: 1) We add a mean pooling layer to each Whis-
per representation to lower the time sequence length n from 500
to 25; 2) We add an optional linear projection layer to lower d
from 1280 to 512 before audio tagging Transformers (denoted
by TL-Tr512); and 3) For WA-Tr, we first conduct weighted
averaging and then apply a temporal Transformer, for TL-Tr,
we use a single temporal Transformer for all layers. Thus both
WA-Tr and TL-Tr only need one temporal Transformer.
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Figure 3: Histrogram of the best Whisper representation layer
(1-32) for the 50 ESC-50 sound classes. We train a linear layer
on top of the representation of each of the 32 Whisper layers for
ESC-50 sound classification, compute the class-wise F1-Score,
and find the best representation layer for each sound class. Dif-
ferent sound classes get the best F1-score on representations of
different layers.
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Figure 4: The proposed time and layer-wise Transformer model.

5. Experiments
As mentioned in Section 4, we intentionally freeze the weights
of the original Whisper model, so the ASR performance of
Whisper-AT is exactly the same as the original Whisper [1].
Thus we only conduct experiments on the audio tagging task.

5.1. Experiment Settings

Dataset: We use AudioSet and ESC-50 datasets following stan-
dard evaluation protocols. AudioSet [20] is a collection of over
2 million 10-second audio clips excised from YouTube videos
and labeled with the sounds that the clip contains from a set of
527 labels. We train our model with both the balanced training
set (AS-20K) and full training set (AS-2M) and report mAP on
the evaluation set. ESC-50 [6] consists of 2,000 5-second envi-
ronmental audio recordings organized into 50 classes; we evalu-
ate our model using the official 5-fold cross-validation protocol.
Hyper-Parameters: We use the standard training pipeline in
prior AT work [21, 22, 26, 27]. For all experiments, we use a
batch size of 48 and an Adam optimizer [28]. For the proposed
TL-Tr512 model, we use an initial learning rate of 2e-4, 1e-4,
and 5e-4, and train the model for 30, 5, and 30 epochs for AS-
20K, AS-2M, and ESC-50, respectively. For baseline methods,
we search the learning rate to ensure a fair comparison.

5.2. Experiment Results

We show the main results in Table 1. The key conclusions are:
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Table 1: Audio tagging performance comparison on AS-20K, AS-2M (mAP), and ESC-50 (accuracy). †ASR backbone parameters and
FLOPs are not included. ⋆Speed-up = 1/FLOPs, compared with AST; FLOPs computed by fvcore [19]. ‡: labeled AS-2M data
is also used. ∗∗ AS-2M experiment is expensive, we skip it when AS-20K and ESC50 experiments already shown clear differences.
End-to-End fine-tuning results are shown in grey text as the comparison is not exactly fair.

Model Training Setting Method AS-20K AS-2M ESC-50 AT #Params† AT Speed-Up†⋆

Existing Standalone Audio Tagging Models
AudioSet Baseline [20] Fine-Tuning End-to-End - 31.4 - - -
AST [21] Fine-Tuning End-to-End 34.7 45.9 88.8 87M 1 × (133G FLOPs)
SSAST [22] Fine-Tuning End-to-End 31.0 - 88.7 87M 1 ×
PANNs [23] Fine-Tuning End-to-End 27.8 43.9 94.7‡ 81M 2.5 ×
MAE-AST [24] Fine-Tuning End-to-End 30.6 - 90.0 87M 2.7 ×
Audio-MAE [25] Fine-Tuning End-to-End 37.0 47.3 94.1 87M 2.7 ×
Existing Automatic Speech Recognition Models
Hubert X-Large [3] Frozen WA-MLP 18.5 - ∗∗ 82.2 0.7M 195K ×
Hubert X-Large [3] Frozen TL-Tr1280 20.2 - 83.6 40M 5 ×
wav2vec2-Large-Robust [17] Frozen WA-MLP 18.1 - 78.5 0.5M 244K ×
wav2vec2-Large-Robust [17] Frozen TL-Tr1024 20.2 - 82.8 26M 17 ×
Whisper-AT
Whisper-Large Frozen Last-MLP 20.6 20.3 87.0 0.7M 195K ×
Whisper-Large Frozen WA-MLP 25.7 32.4 90.2 0.7M 195K ×
Whisper-Large Frozen WA-Tr 32.1 41.0 91.0 20M 270 ×
Whisper-Large Frozen TL-Tr1280 33.0 42.1 91.1 40M 8 ×
Whisper-Large Frozen TL-Tr512 32.8 41.5 91.7 7M 42 ×
Whisper-Large Fine-Tuning End-to-End 34.7 45.7 90.0 655M 0.4 ×
Whisper-Small Fine-Tuning End-to-End 31.9 44.1 88.9 94M 2.5 ×

First, Whisper-AT is significantly stronger than Hubert X-
Large [3] and wav2vec2-Large-Robust [17] on audio tagging,
demonstrating that Whisper is not only the most robust ASR
model but also the strongest audio tagging backbone.

Second, comparing the four Whisper-AT models, the pro-
posed TL-Tr model leads to the best performance with higher
computational overhead. However, by projecting the Trans-
former dimension from 1280 to 512, TL-Tr512 strikes a bal-
ance between performance and efficiency, as its FLOPs are less
than 1% of the Whisper ASR FLOPs yet it performs almost the
same as TL-Tr1280. In Table 2, we further study the relation-
ship between the audio tagging performance and Transformer
dimension d for TL-Tr. Even TL-Tr128 provides reasonably
good audio tagging performance, while its computational cost
is almost free (<0.1% FLOPs of the Whisper ASR FLOPs).

Third, Whisper-AT is slightly worse than SOTA standalone
audio tagging models but is much more efficient. The proposed
TL-Tr512 achieves 32.8 mAP, 41.5 mAP, and 91.7 accuracy
on AS-20K, AS-2M, and ESC-50, respectively, and is 42 times
faster and 11 times smaller than AST [21]. Note that we target
the cases that the user is already running an ASR and want to get
additional audio labels, so we only compare the additional cost
for AT and do not include the cost of ASR in this comparison.

Fourth, how does Whisper perform in the end-to-end fine-
tuning setting, and how does it compare to SOTA audio tagging
models? We add a new Transformer layer on top of the Whisper
encoder and train the entire model end-to-end (new layer uses
a 10-100× larger learning rate). For a fair comparison, we also
test Whisper-Small which is of similar size to SOTA audio tag-
ging models. We find Whisper-Small performs similarly with
previous self-supervised pretrained models such as SSAST [22]
and MAE-AST [24] after fine-tuning.

Finally, we test the audio tagging performance of smaller
Whisper models. As shown in Figure 5, smaller models have
weaker audio tagging performance but the difference between
Whisper-Small, Medium, and Large is minor. We also test the
ASR noise-robustness of these models on speech contaminated
by ESC50 background sounds; larger models are more robust.
We again observe a positive correlation between ASR noise ro-

Table 2: Performance and efficiency impact of TL-Tr Trans-
former dimension d.

Tr Dim d FLOPs (G) #Params (M) AS-20K ESC-50

128 0.31 0.6 30.0 91.4
256 0.94 2.1 32.0 92.0
512 3.17 7.2 32.8 91.7
768 6.72 15.6 33.0 91.4

1280 16.42 40.0 33.0 91.1
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bustness and AT performance. In addition, Whisper-Base (74M
parameters) is already more robust in ASR and stronger in audio
tagging than Hubert-X-Large (964M parameters).

6. Conclusion
The Whisper ASR model revives the supervised learning
scheme by using a massive and diverse training corpus. In this
paper, we report an intriguing property of Whisper that while
being very robust, the audio representation of Whisper is actu-
ally noise-variant and encodes rich background sound informa-
tion. Based on this finding, we propose a unified audio tagging
and ASR model called Whisper-AT. With only less than 1% ad-
ditional cost, Whisper-AT can recognize the background sound
in addition to spoken text in a single forward pass.
Acknowledgments: This research is supported by the MIT-
IBM Watson AI Lab.
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