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Abstract
In speech anti-spoofing, artefacts used to detect spoofed speech
are often located in specific sub-bands. Previous works often
use Convolution Neural Networks (CNNs) as backbone which
are good at capturing local features. However, if artefacts simul-
taneously exist in different sub-bands, CNNs cannot model this
kind of information. Thus, we propose to use Feature Pyramid
Conformer to solve this issue. Conformer can capture both lo-
cal and global features. We aggregate the outputs of each Con-
former block with Feature Pyramid Module. Through addition
and lateral connection, the aggregation can be better integrated.
Besides, to improve generalization of detecting unknown at-
tacks, we propose to adopt Elastic penalty Margin Softmax.
It can enhance intra-class compactness and inter-class discrep-
ancy flexibly. Without data augmentaion, our system achieve
an Equal Error Rate (EER) of 1.65% on the evaluation set of
ASVspooof 2019 logical access, outperforming most existing
systems.
Index Terms: Conformer, feature pyramid, anti-spoofing,
speaker verification, loss function

1. Introduction
Automatic Speaker Verification aims at confirming whether a
given speech signal proceeds from a given individual, and has
broad application prospects in finance, banking, e-commerce
and other fields[1]. However, it is possible to illegally pass ASV
systems by imitation, voice conversion (VC), text-to-speech
(TTS), replay and adversarial attacks, which brings severe chal-
lenges to the security of biometric verification systems. In re-
cent years, speech synthetic and voice conversion technology
have made significant progress in timbre and naturalness, which
makes anti-spoofing face greater challenges.

In order to solve these security problems, the ASVspoof
holds a competition every other year, which aims to en-
courage the development of effective countermeasures against
unseen spoofing attacks in ASV systems[2, 3, 4]. Since
ASVspoof2019, the challenge has been divided into two tracks:
logical access (LA) and physical access (PA) scenarios. The
former aims at detecting synthetic speech and the latter aims at
detecting replay attacks. Many scholars have carried out multi-
angle researches on synthetic speech detection and achieved
great results. In out study, we focus on the LA attacks.

Convolutional neural network(CNN) approaches have been
applied extensively in speech anti-spoofing such as ResNet[5],
LCNN[6, 7, 8, 9], Res2Net[10]. CNNs are good at captur-
ing local information progressively through a local receptive
field layer by layer. On the contrary, they have difficulty in
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capturing long-range global representations. In recent years,
Transformer[11] is very popular due to its efficiency in train-
ing and the ability of capturing long distance interaction, which
is caused by self-attention mechanism. Although Transformers
have achieved great performance in the field of ASR, they are
difficult to extract fine-grained local feature templates and also
require complex pre-training procedures.

Artefacts refer to signatures in spoofed speech that left be-
hind by voice conversion and speech synthesis algorithms. It is
well known that artefacts of spoofing attacks often reside in spe-
cific sub-bands or temporal segments [12, 13, 14, 15, 16], which
indicates why CNNs can achieve good performance. However,
if artefacts present in different filters or sub-bands at the same
time, CNNs can not model such information. In [17], it has
showed the merit of graph attention networks (GATs) to learn
the relationships between cues in different sub-bands or tem-
poral intervals by using self-attention mechanism. Therefore,
we propose to use Conformer[18] as a powerful modeling tool
to solve the problem. Conformer, a combination of CNN and
Transformer, may exploit local and global cues with more dis-
tinguishable power.

Besides, previous studies[19, 20] indicate that low-level
feature maps also assist in speech embedding extraction. Due
to the depth of the network, there is a large semantic gap be-
tween the lower layer and the higher layer. The feature maps
from higher layer are more discriminative. In order to aggre-
gate both lower and higher layer feature maps and also enhance
the discriminability of lower-layer feature maps, we propose to
use Feature Pyramid Module (FPM). Through the top-down ar-
chitecture with lateral connection, the module can produce a
feature representation in which all levels are sematically strong.

One of the most important problems in anti-spoofing is the
generalization to unseen spoofing attacks in the test stage[21].
In recent years, Softmax and AM-softmax are commonly used
in anti-spoofing. There are also some studies focusing on de-
signing more efficient loss functions. Chen[22] uses Large Mar-
gin Cosine Loss (LMCL) which reforms softmax loss as a co-
sine loss. LMCL can force DNN to learn the feature repre-
sentation that can maximize inter-class variance and minimize
intra-class variance. Zhang[23] believes that the distribution
of various types of forgery attacks is not similar and proposed
one-class softmax (OCsoftmax). However, these methods all
proposed to incorporate a fixed penalty margin on loss func-
tion. Such learning objectives are unrealistic for data with dif-
ferent speakers and attacks, which may limit the discrimination
and flexibility of anti-spoofing models. In our paper, we pro-
posed to relax the fixed margin by Elastic Margin Softmax (EM-
Softmax)[24] that allows flexibility for classification. The main
idea is to extract random penalty margin values from a normal
distribution in each training iteration. This makes the decision
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Figure 1: The structure of our proposed methods

Figure 2: The structure of the Conformer

boundary more flexible and leaves space for class separability
learning.

The rest of this paper is organized as follows. Section2
describes the general framework of our proposed systems and
introduces the Feature Pyramid Conformer and Elastic Margin
Softmax in detail. Section 3 shows the experimental setup. Sec-
tion4 reports the result of our experiments. Finally, we summa-
rize the conclusions derived from this research in Section 5.

2. Methodology
In this section, we will introduce the proposed Feature Pyramid
Conformer (FP-Conformer) and Elastic Margin Softmax (EM-
Softmax). The overall architecture is shown in Figure 2.

2.1. FP-Conformer

Firstly, the hand-craft feature LFCCs will pass through a convo-
lution subsampling layer and dropout to reduce computational
cost and prevent overfitting. Combined with CNN and Trans-
former, Conformer can capture both long-range global context
dependencies and local details which may be helpful in learn-
ing discriminative cues between spoofing and bona fide speech.
Conformer is composed with two half-step feed forward net-
works (FFNs), one Multi-head self-attention (MHSA) module
and one convolution module, and each whole block is followed
by LayerNorm. Each module adopts residule unit. The two
half-step FNNs makes the Conformer block look like a Mac-
aron and performs better than one single FNN[25]. From the
Figure 2, we can see that convolution and self-attention are con-
catenated to achieve enhanced effect.

In anti-spoofing, it is important to learn the cues in the
spoofed audio. Conformers are feed-forward architectures and
use repeated Conformer blocks. Because of the depth in net-
works, there is large semantic gap between low-level and high-
level feature maps. In order to aggregate all the outputs of each
Conformer block, we adopt feature pyramid module (FPM)
rather than concatenating the outputs directly as in[26]. There

Figure 3: Feature pyramid module. (a):aggregation w/o FPM.
(b):aggregation with FPM. a⃝ denotes adding. c⃝ denotes con-
catenation.

are L Conformer blocks in our architecture. As showed in Fig-
ure 3, for the output feature map Fi from i-th Conformer block,
it will be added with the output of last block (i+1)-th from top
to down. This strengthens the deep discriminative information
and supplements the shallow complementary information.

2.2. Elastic Angular Margin Penalty-based Loss

An efficient loss function is also important in detection. The
most common loss function is Softmax. It is defined as the
combination of last fully connected layer, softmax function and
cross-entropy loss, which can be formulated as follows:

LS = − 1

N
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i=1

log
e
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xi

e
wT

yi
xi + e

wT
1−yi
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where xi ∈ RD and yi ∈ {0, 1} are the embedding vector and
label of the i-th sample. w0, w1 ∈ RD are the weight vectors
of two different classes, and N is the number of samples in a
mini-batch.

Based on Softmax, the Addictive Margin (AM) Softmax
loss function was proposed to replace the inner product oper-
ation of Softmax function with the cosine similarity operation
in order to widen the inter-class margin in the embedding space
that enhance the feature discrimination. It can be expressed as:

LAMS = − 1

N
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log
eα(cos(θyi )−m)

eα(cos(θyi )−m) + eα cos(θ1−yi
)

(2)
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cos(θyj ) = ŵT
j x̂i (5)

where m is an additional penalty margin and α is a scaling fac-
tor for stabilizing training. θyi is the angle between the weight
wyi and the feature representation xi.
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Figure 4: The difference between AM-Softmax and EM-Softmax.
(a):AM-Softmax. (b):EM-Softmax.

Unlike the AM-Softmax that utilize a fixed margin value,
we propose to adopt random margin penalty-based loss to anti-
spoofing problem by randomly extracting margin values from a
Gaussian distribution. In each iteration, the margin is different
for each sample and changes in the next iteration. The Gaussian
distribution can be expressed as follows:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (6)

where µ is the mean of the distribution and σ is the standard
deviation. The EM-Softmax can be formulated as:

LES = − 1

N

N∑

i=1

log
eα(cos(θyi )−E(m,σ)

eα(cos(θyi )−E(m,σ)) + eα(cos(θ1−yi
))

(7)
where E(m,σ) is a normal function that returns a random mar-
gin from (6) with the mean m and the standard deviation σ. The
decision boundaries of AM-Softmax and EM-Softmax are illus-
trated in Figure 4. As we can see from the figure, rather than
setting a fixed penalty margin value to train the model, the ran-
domized margin penalty may give the model flexibility and gen-
eralization in detecting various and unseen synthetic speech. In
anti-spoofing, there are many kinds of spoofing attacks. Gernar-
alization and flexibility are two important points. Considering
multi speakers and spoofing attacks, it is reasonable to set dif-
ferent margins in loss function.

3. Experiments
3.1. Datasets

We only use the ASVspoof 2019 LA dataset[27] in our exper-
iments. This dataset contains 17 different attacks. The LA
dataset is divided into three subsets for training, development
and evaluation. The training and development sets contain the
same 6 attacks(A01-A06). The evaluation set contains 11 un-
seen attacks and 2 known attacks. The details of the LA dataset
are shown in Table 1.

Table 1: Summary of the ASVspoof2019 LA dataset

Datasets Bona fide Spoofed
utterance utterance attacks

Training 2580 22800 A01-A06
Development 2548 22296 A01-A06

Evaluation 7355 63882 A07-A19

3.2. Evaluation Metrics

We use equal error rate (EER) and the minimum tandem de-
tection cost function (min t-DCF) as the metrics for all experi-
ments. For anti-spoofing task, EER is the value when the false
rejection rate (FRR) and false accepytance rate (FAR) are equal.
EER can reflect the security and accuracy of the system at the
same time, and it is an important indicator to measure the per-
formance of the biometric system. The min t-DCF[28] shows
the impact of spoofing and the spoofing detection system upon
the performance of an automatic speaker verification system.

3.3. Details of system implementation

In our experiment, we extract 60-dimensional linear frequency
cepstral coefficients (LFCCs) from the utterances with MAT-
LAB provided by the ASVspoof 2019 Challenge organizers.
We set the frame size as 20ms and the hop size as 10ms. We
use Pytorch framework to implement the FP-Conformer and
EM-Softmax. The architecture takes the extracted LFCCs as
input and outputs 256-dimentional embedding. We use the net-
work architecture from[26] and improve it with FPM. We set
the convolutional subsampling rate as 1/4. In the Conformer
block, the encoder dimension is 256 and the number of atten-
tion heads is 4 for multi-headed self-attention; for convolution
module, the kernel size is 15; for feed forward module, the lin-
ear hidden units is 2048. For the hyper-parameters in the loss
functions, we set α=20, m=0.9 for all the loss functions in our
experiments and set σ=0.0125 for EM-Softmax. We use Adam
optimizer with the β1 parameter set to 0.9 and the β2 parame-
ter set to 0.999 to update the weights in the FP-Conformer. The
batch size is set to 64. The learning rate is initially set to 0.0003
with half decay for every 10 epochs. We trained the network
for 100 epochs on a single NVIDIA GTX 3090 GPU and then
select the model with the lowest validation EER for evaluation.

4. Results
4.1. Impacts of feature pyramid module

In this section, we study the impacts of FPM by comparing with
concatenating the outputs directly under EM-Softmax and AM-
Softmax. We also remove the aggregation of the outputs of each
Conformer block and only use high-level feature map for final
classfication to test the effect of multi-scale aggregation. As
shown in Table 2, FPM has better results both in development
and evaluation set no matter with AM-Softmax or EM-Softmax.
FPM can improve the performance up to 16.9% in terms of min
t-DCF under AM-Softmax.

Moreover, the dimension-reduced embedding visualization
is shown in Figure 5. The t-distributed Stochastic Neighbour
Embedding(t-SNE) is applied to evaluation dataset with and
without FPM under EM-Softmax. By comparing the subfig-
ures (a) and (b), it is shown that there are fewer spoofed speech
embeddings around the bona fide speech manifold. This sug-
gests that the embedding from our model with FPM are more
discriminative.

4.2. Impacts of Elastic margin Softmax

Besides, we also study the impact of EM-Softmax by replac-
ing it with AM-Softmax. The difference between them is that
the margin penalty values are obtained from a Gaussian dis-
tribution rather than fixed and constant. Under the setting of
same input features and architectures, we can see from the Ta-
ble 2 that EM-Softmax surpasses AM-Softmax no matter with
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Table 2: Ablation study of MFA-Conformer on the ASVspoof 2019 logical access development and evaluation set.

Aggregation Dev Set Eval Set
EER(%) min t-DCF EER(%) min t-DCF

FPM+EM-Softmax 0.20 0.005 1.65 0.047
w/o FPM+EM-Softmax 0.58 0.019 1.84 0.054
w/o FPM+AM-Softmax 0.70 0.018 2.29 0.065
w/o concat+EM-Softmax 0.35 0.010 2.76 0.073

FPM+AM-Softmax 0.51 0.014 2.08 0.054

Figure 5: Feature embedding visualization of FPM and w/o
FPM. Red:bona fide speech; Blue:Spoofing attacks. (a): w/o
FPM+Elastic-Softmax. (b):FPM+Elastic-Softmax.

or without the FPM and the relative improvement on EER is up
to 21.2%. We are very interested in OC-Softmax in[23] and we
take it as baseline and also do a comparision with it. In Table 3,
for the individual attacks, EM-Softmax has good performance
in gerneral. Among all the attacks, A17 is the most difficult
to detect. Compared with OC-Softmax, our system has made
some improvement.

Table 3: EER(%) and min t-DCF for individual attacks on the
ASVspoof 2019 logical access evaluation and development set

Attacks ResNet18-
OC-Softmax[23] MFA-

EM-Softmax

A07 0.12 0.14
A08 0.18 2.20
A09 0.12 0.02
A10 1.14 0.91
A11 0.12 0.04
A12 0.47 0.20
A13 0.22 0.19
A14 0.69 0.47
A15 1.40 0.39
A16 0.33 0.14
A17 9.22 6.09
A18 0.90 1.30
A19 0.90 0.75

4.3. Comparison of Different Models

Table 4 shows the results of the baseline system that use OC-
Softmax and other systems that use various CNNs and several
Conformers on the ASVSpoof2019 LA evaluation set. We also
report some state-of-the-art models. In evaluation set with many

Table 4: EER(%) and min t-DCF for different backbone net-
works on the ASVspoof 2019 logical access evaluation set.

Models Performances
EER(%) min t-DCF

Res2Net[10] 2.869 0.0786
OC-Softmax[23] 2.19 0.059

Res2NEet34-Conformer[29] 1.85 0.06
ResNet-LMCL[22] 1.81 0.052

ASSERT[30] 6.70 0.155
LCNN-LSTM[31] 1.92 0.0524

LCNN[6] 1.84 0.0510
CGCNN[7] 3.56 0.1118

FG-LCNN[8] 4.07 0.102
LCNN-DA[9] 2.76 0.0777

Capsule Network[32] 1.97 0.0538
Attention[33] 1.87 0.051

Raw PC-DARTS[34] 1.77 0.0517
GAT[17] 1.68 0.0476

Ours 1.65 0.047

unseen attacks, our proposed single system can achieve EER of
1.65%, which is a good result in single systems.

5. Conclusions
In this work, we propose to apply a Feature Pyramid Conformer
and Elastic Margin Softmax in synthetic speech detection. Con-
former can capture both local information and global informa-
tion which is helpful in learning discriminative cues between
spoofing and bonafide speech. By aggregating all level fea-
ture maps using feature pyramid module, the results become
better. For the loss functions, we relax the fixed margin from
a Gaussian distribution which improve the discriminative and
generalizability of the model. Our study shows that the pro-
posed model can enhance the robustness and generalization of
the model against unknown spoofing attacks. Without any data
augmentation of the ASVspoof 2019 LA scenario, the system
has better performance than most existing single systems. The
future work will focus on extending the studies to replay attack
detection and data augmentation methods.
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