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Abstract

Most speech quality assessment methods require a perfect refer-
ence signal to evaluate the damaged speech’s quality. However,
it is challenging to obtain clean reference signals due to various
types and levels of noise in reality. Meanwhile, no-reference
speech quality assessment is less accurate than full-reference
method. To address these issues, we propose a novel no-
reference speech quality assessment model that improves eval-
uation accuracy with lower complexity. The model is primar-
ily composed of three densely connected convolutional (DCC)
modules and a bidirectional long short-term memory (BLSTM)
module. Experiment results demonstrate that our method out-
performs the baselines, achieving state-of-the-art on the no-
reference speech quality assessment task. When using PESQ as
optimization targets, the MSE, PLCC and SRCC reach 0.0389,
0.9695 and 0.9715, whereas when using STOI, these metrics
reach 0.0019, 0.9608, and 0.9630, respectively.

Index Terms: speech quality assessment, deep learning, neural
network, non-intrusive, objective assessment

1. Introduction

Speech quality assessment plays an crucial role in speech-
related fields as speech degraded by environmental noise, elec-
tronic noise and other factors can drastically impair human in-
tuitive perception. Over the years, different methods have been
proposed to convert the implicit auditory perception into ex-
plicit scores to quantify speech quality. For the subjective au-
ditory perception methods, professionals give speech quality
assessment results through direct listening to the speech au-
dio. Common subjective speech assessment methods, including
mean opinion score (MOS) [1], ABX Test and so on, are able
to get accurate and reasonable results at the cost of time and
labor. By contrast, objective quality calculation usually uses
mathematical methods to calculate different parameters related
to speech quality and then come to quality scores, such as per-
ceptual evaluation of speech quality (PESQ) [2], short-time ob-
jective intelligibility (STOI) [3], perceptual objective listening
quality analysis (POLQA) [4], ITU-T P.563 [5], etc. Most of
the assessment methods mentioned above are fully referenced,
which means they require a clean reference speech. However,
clean reference speeches are not always available in real speech
testing scenarios, and the testing process is also hard to repli-
cate. Therefore, no-reference assessment methods are more
suitable for this situation. Unfortunately, the accuracy and gen-
eralization of such methods are not always optimal [6].

In recent years, deep learning has been widely utilized in
speech quality assessment. Since the backpropagation mech-
anism can automatically optimize parameters along the gradi-
ent in differentiable mathematical models, human can construct
more complex neural networks. Consequently, it is possible to
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further improve the accuracy of speech quality assessment al-
gorithms under no-reference conditions. Yoshimura et al. [7]
used a fully connected neural network and a convolutional neu-
ral network (CNN) to build a model. They took manually ex-
tracted features as input to train the model and found the corre-
lation between the prediction results of the model and the MOS
scored by humans in their experiments. Fu et al. [8] proposed
a deep learning model based on bidirectional long short-term
memory (BLSTM) network to extract the serialized frequency
domain features of the speech and predict the PESQ score of
the speech without reference. The high correlation between the
prediction score and the PESQ score are demonstrated in the
experimental results. It has proved the effectiveness and fea-
sibility of the network based on the BLSTM structure for the
speech quality assessment task. CNN and BLSTM have been
combined in the work of Chen et al. [9]. They took the short-
time Fourier transform (STFT) of the speech signal as the in-
put feature, and then trained the model to learn the correlation
between the speech and the MOS score. Subsequently, STOI-
Net [10], HASA-Net [11], MOSA-Net [12] and NISQA [13]
introduced the attention mechanism to CNN-BLSTM based net-
work, trained and applied the model to different speech assess-
ment tasks. At the same time, [14-18] to employ the neural
network of temporal convolutional network (TCN) structure to
directly take the time domain information as the input feature to
optimize the speech’s quality score.

Currently, many deep learning-based speech quality assess-
ment models use the traditional CNN structure, which con-
sists of serial connection convolution layers. However, this
structure struggles to efficiently extract high-dimensional and
low-dimensional features simultaneously and may encounter is-
sues such as gradient disappearance or explosion. To address
this problem, we propose a densely connected convolutional
(DCC) structure that aims to improve feature extraction perfor-
mance by mixing high-dimensional and low-dimensional fea-
tures. Then, based on the DCC module, we add BLSTM to fuse
the timing features, and then extracted the quality score through
a fully connection layer and a average pooling layer. After that,
we train and verify our model on speech with multiple types and
levels of impairments under different optimization targets. Our
results show that our proposed model is able to effectively learn
multi-dimensional feature representations and achieve accurate
speech quality scores with robust generalization.

The remainder of this paper is organized as follows. we
introduce our novel proposed model for speech quality assess-
ment and its corresponding objective function for training in
Section II. In Section III, we describe the experimental process
and display the experimental results. Our findings are also dis-
cussed. Finally, we conclude our work in Section I'V.
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2. Proposed method
2.1. Backbone architecture

The backbone of the traditional CNN-based speech quality as-
sessment network is mainly composed of multiple serial con-
catenated convolutional layers. The features calculated by the
final convolutional layer are directly fed to the subsequent
network, while the effective low-dimensional features calcu-
lated by the intermediate convolutional layers fail to be ef-
fectively transferred and only evolve to high-dimensional fea-
tures as the network progresses. With the premise that low-
dimensional features have a greater impact on optimizing the
objective function, the model backbone output tends to evolve
towards the low-dimensional features generated by the inter-
mediate convolutional layer. At this point, it is equivalent to
the identity mapping between the output features and the low-
dimensional features. Thus, a conflict arises between preserv-
ing low-dimensional features and extracting high-dimensional
feature information. Furthermore, as the number of layers
increases, the gradient may exponentially increase or decay,
which poses a risk of gradient explosion or vanishing.

To address these issues, we draw upon Gao et al.’s [19] tech-
niques for solving similar problems in the computer vision field
and introduce DCC blocks from DenseNet to the speech quality
assessment task, with some modifications to the basic architec-
ture. The computation process of a DCC block is described as
follows:

y = concat (D (¢g" (x), D (x))) M

where concat(-) stands for concatenation of inputs and D(+)
means downsampling operation on matrices. g(-) are given as:

(@)

where ReLU(-) represents ReLU activation function and
Conv(+) indicates convolution calculation.

The overall framework of our model is shown in Figure 1.
We employ a feature extracting network with three DCC blocks
as our backbone. A DCC block mainly consists of four con-
volutional layers and a cascade structure, where an activation
function layer is applied to activate the output data after each
convolutional layer. The input features are concatenated with
the output features after passing through three feature convo-
lutional layers. Then we set the step size of the fourth con-
volutional layer to 2 (non-temporal dimension) to reduce the
size of the feature. In this way, the calculation complexity of
the model is reduced and the receptive field is expanded at the
same time. By cascading the features before and after convolu-
tion, the low-dimensional feature information can be transferred
to the convolved features without identity mapping. Through
multiple densely connected CNN blocks, our model can extract
both low-dimensional and high-level features effectively.

g(x) = ReLU(Conv(x))

DCC Block - 2 DCC Block - 3 BLSTM  FC AP

DCC Block - 1

Backbone Architecture Neck Architecture

Figure 1: The overall framework of our proposed model. FC
and AP respectively represent fully connected layer and average
pooling layer:
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As speech signals are time-series data, the quality of each
time frame contributes to the overall speech assessment results.
Due to the local calculation property of convolutional layers, the
original timing characteristics of the speech signal will not be
destroyed. Thus, the output features obtained through the back-
bone will still retain the timing correlation of the speech signal.
In this subsection, we expect that the DCC-based backbone will
combine the input information of each time frame to extract
frame-level quality features. Then, these features are scored
through the neck architecture to obtain frame-level scores and
system-level scores in sequence, which will be discussed in the
next subsection.

2.2. Neck architecture

The system-level score of speech signal is not only related to
the features of the current time frame, but also to the features of
the preceding and subsequent time frames. Therefore, a sequen-
tial analysis of the features of all frames in the temporal dimen-
sion is required. The DCC-based backbone architecture extracts
the temporal frame-level features of the speech signal, and the
neck architecture is responsible for analyzing and calculating
of these frame-level features sequentially and combining them
for system-level representation. The BLSTM network has the
ability to process information bidirectionally based on the time
step, which can be comprehensively represented by combining
the temporal features. Therefore, we selected the BLSTM net-
work as the temporal features analysis module to extract the
overall features of speech quality. A standard BLSTM consists
of an input gate, a forget gate, an output gate, an input modula-
tion gate, a memory cell state, and a common BLSTM unit at a
time step can be expressed as follows:

itf = Sigmod (oi‘f (xt, ht_l)) ,
f} = Sigmod (Uff (xt,ht_l)) ,
Osc = Sigmod (aof (xt, ht_l)) , 3)
g} = Tanh (O'gf (xt, ht_l)) ,
cf =ffoci ! +ifog),
h’ = o} ® Tanh (c%).
i{ = Sigmod (O’ib (xt, htH)) ,
ff = Sigmod (O'fb (xt, htﬂ)) ,
o}, = Sigmod (O'Ob (xt, hit! ) , @
gl = Tanh (Ugb (xt, htﬂ)) ,
o, =f o +i; 0,
h! = o} ® Tanh (ci) .
y' = concat (h}7 hf,) %)

where it, £, of, g¥, c*, h® represent input gate, forget gate, out-
put gate, input modulation gate, memory cell state and hidden
state in the BLSTM unit at time ¢, respectively. A group of for-
mulas in (3) represents the forward processing condition of one
BLSTM unit, denoted by the subscript f. Similarly, the group
of formulas in (4) indicates the backward processing condition
of one BLSTM unit, denoted by the subscript b. The results
in (3) and (4) are concatenated to compose the final output y*
at time ¢ in equation (5). Sigmoid(-) stands for sigmoid ac-
tivation function. T'anh(-) stands for tanh activation function.
© means for Hadamard product. And o(-) denotes a computa-
tional process with a learnable matrix, which can be described
as:

Os (X7 Y) =W -x+ Wsy -y + biass (6)



where W, and W, represent a learnable matrix for the input
x and y under the condition of s, respectively. bias, represents
the learnable parameter under the condition of s .

Then, after passing through the BLSTM module, we use
a fully connected layer to regress the features and obtain the
frame-level score. Finally, based on these frame-level scores,
a global average pooling layer is applied to calculate the final
system-level score.

2.3. Objective function

In this paper, we regard the no-reference quality assessment
based on deep learning as a regression task. Under the no-
reference condition, a non-invasive method of our model is used
to regress the quality scores with reference speech calculated.
Considering that the speech is distorted by the non-stationary
noise at different time scales, it is unreasonable to use the
system-level score for training directly which may leads to in-
accurate estimates. Therefore, we combined the error of frame-
level scores and system-level scores as the objective function to
iteratively optimize the model. The objective function can be
describe as :

N T
1 ,
0= |(Si= 8"+ 2D (Si—s)?| (D
=1 t=1

where S; is the system-level ground truth score of the i-th
speech, and S is the system-level prediction score of the i-th
speech. s; ¢ is the frame-level score of the i-th speech at time
t . T represents the length of time frames of one speech. N
represents the number of speech training sets. « is the balance
factor between frame-level scores and system-level scores, and
we set the balance factor « to 1 in this study.

3. Experiment
3.1. Experimental setup

MUSAN dataset [20], which is a corpus of music, speech, and
noise recordings, is adopted in our experiments. We selected
173 speech signals in MUSAN which are resampled to 16kHz.
Each resampled speech signal was divided into 8-second slices,
resulting in 9169 clean speech slices that were used as a refer-
ence dataset. To simulate the impact of noise on speech sig-
nal transmission under stationary and burst noise conditions,
we add varying levels of Gaussian white noise to the speech
signal slices. As for the stationary noise, we randomly add 10
different types of Gaussian white noise to each speech slice,
with a signal-to-noise ratio (SNR) uniformly distributed be-
tween —30dB and 40dB (interval 1dB). For burst noise, we
first randomly add 10 kinds of background Gaussian white noise
with SNR uniformly distributed in the range of 20dB-40dB to
each signal slice (interval 1dB). Then, we add burst Gaussian
white noise of a duration of 1 second to each speech slice with
background noise which is uniformly distributed in the range of
signal-to-noise ratio —15dB-15dB (interval 1dB). Apart from
the noise mentioned above, no other type of impairment was
considered. Among the obtained 183,380 speech slices with
noise, we randomly select 160,000 signal slices as the training
set, 15,000 signal slices as the test set, and 8,380 signal slices
as the cross-validation set without repetition.

The input information of the model is the spectral feature
of the signal slice. Hence, we perform a STFT with a Ham-
ming window of 32ms and a hop of 16ms on the speech slices.
The STFT has 512 points, and the length of the sliding win-
dow is 256. The model predicts the quality score of the speech
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slice based on its STFT information, and the objective func-
tion calculates the error between the prediction score and the
ground-truth score. The backpropagation algorithm optimizes
the model based on the error.

We evaluated the accuracy of our model for speech qual-
ity scores using three evaluation metrics: mean square er-
ror (MSE), Pearson linear correlation coefficient (PLCC), and
Spearman rank-order correlation coefficient (SRCC). MSE di-
rectly quantifies the error between the model’s prediction score
and the ground-truth score, PLCC evaluates the degree of linear
correlation between the two scores, and SRCC measures the de-
pendence of the model’s prediction score and the ground-truth
score. Lower MSE, higher PLCC and higher SRCC are inclined
to better performance of the model.

3.2. Performance evaluation of model architecture
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Figure 2: The scatter diagram of prediction scores and ground
truth scores of Time-TCN, STOI-Net and our proposed model
under the condition that PESQ scores and STOI scores are used
as optimization metrics. Red line depicts the fitted linear curve.

We selected PESQ and STOI as the objective assessment
algorithms to score speech slices, and trained our model using
these scores as reference. It is worth noting that we regress
the two assessment algorithms separately under the same condi-
tions, rather than making the model learn two assessment algo-
rithms at the same time. This helps us compare the generaliza-
tion of our model in different algorithms. We then compare our
proposed model with Xupeng Jia’s Time-TCN model [17] and
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optimization metrics. Orange line is the median of error. A, %
and o represent the mean of error in different models.



Ryandhimas E’s STOI-Net [10]. To keep other variables un-
changed, the dataset is shuffled with the same random seed. The
training epoch, the learning rate and the batch size are set to 2,
le-4 and 1, respectively. We choose the model which minimizes
the loss value of the objective function in the cross-validation
set as the final test model. The PLCC, SRCC, and MSE in the
experiment are shown in Table 1 . The scatter diagram of pre-
diction scores and ground truth scores is shown in Figure 2, and
the error’s CDF curve and box plot are shown in Figure 3. It
can be seen that in Table 1 , our model outperforms the other
two models in terms of lower MSE, higher PLCC, and higher
SRCC, regardless of whether PESQ or STOI is used as the op-
timization metric. This is also evident from Figure 2, where
prediction scores of our model have a more obvious correlation
with the ground truth scores. Additionally, Figure 3 exhibits
prediction scores of our model have a higher proportion in the
lower-error area.

Table 1: MSE, PLCC and SRCC results of Time-TCN, STOI-Net
and our proposed model on PESQ and STOI prediction scores.
1 or | is better.

PESQ STOI
Model MSE| PLCCt SRCCt MSE| PLCC{ SRCC1t
Time-TCN 11653  0.6805  0.6936  0.0069 0.8700  0.8790
STOI-Net  0.0448 09651 09675 0.0022 09569  0.9590
Ours 0.0389 09695 09715 0.0019 09608  0.9630

3.3. Performance evaluation of DCC module

In the experiments in Section 3.2, compared with the Time-TCN
and STOI-Net models, our model shows superior performance
when PESQ scores and STOI scores were used as optimiza-
tion metrics. In order to verify the effect of the DCC module
in our model, the following experiments are carried out. The
neck architecture remains unchanged. And we replace the 3-
layer DCC module with the traditional CNN module as com-
parison model 1 (CM-1). Then we remove the backbone archi-
tecture, modify the BLSTM to match the dimension of the in-
put features, and get the comparison model 2 (CM-2). Finally,
we use PESQ scores and STOI scores as optimization metrics,
and train, cross-validate and test the two models under the same
conditions as the experiment in Section 3.2. The scores pre-
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Figure 4: The scatter diagram of prediction scores and ground
truth scores of CM-1, CM-2 and our proposed model under the
condition that PESQ scores and STOI scores are used as opti-
mization metrics. Red line depicts the fitted linear curve.
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dicted by the three models are used for comparison and anal-
ysis. PLCC, SRCC, and MSE in the experiments are shown
in Table 2. The scatter diagrams of the prediction scores and
the reference score are shown in Figure 4, and the error’s CDF
curve and box plot are shown in Figure 5. The results show that
the proposed model with the DCC module performs better than
the other two models in terms of MSE, PLCC, and SRCC. The
scatter diagrams also indicate that our model exhibits a higher
correlation with the reference scores than the other two models.

Table 2: MSE, PLCC and SRCC results of CM-1, CM-2 and our
proposed model on PESQ and STOI prediction scores. 1 or | is
better.

PESQ STOI
Model MSE| PLCC+ SRCCT MSE| PLCCt SRCC+
CM-1 00536 09599 09613 00021 09510  0.9533
CM-2 00581 09625 09643  0.0031 09354  0.9419
Ours  0.0389 09695 09715  0.0019 09608  0.9630

4. Conclusions

In this paper, we propose a novel deep learning-based method
for speech assessment. We replace the multi-layer concate-
nated convolutional module with a 3-layer DCC block. When
the reference speech is difficult to obtain, our proposed method
has a wider application prospect and can predict more accu-
rate scores. Experimental results show that compared with other
deep learning-based methods, our model predicts speech quality
scores closer to ground truth scores. Additionally, we investi-
gate the effectiveness of the DCC block in the speech quality
assessment task and show that our model, which incorporates
this structure, yields more accurate results compared to models
without the DCC block. Moving forward, we plan to evaluate
our model’s generalization ability by testing the prediction re-
sults under the condition of different datasets. Moreover, we in-
tend to investigate the performance of deep learning approaches
on multiple speech quality assessment tasks.
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