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Abstract

Alzheimer’s Disease (AD) is the world’s leading neurodegener-
ative disease, which often results in communication difficulties.
Analysing speech can serve as a diagnostic tool for identifying
the condition. The recent ADReSS challenge provided a dataset
for AD classification and highlighted the utility of manual tran-
scriptions. In this study, we used the new state-of-the-art Auto-
matic Speech Recognition (ASR) model Whisper to obtain the
transcriptions, which also include automatic punctuation. The
classification models achieved test accuracy scores of 0.854 and
0.833 combining the pretrained FastText word embeddings and
recurrent neural networks on manual and ASR transcripts re-
spectively. Additionally, we explored the influence of includ-
ing pause information and punctuation in the transcriptions.
We found that punctuation only yielded minor improvements
in some cases, whereas pause encoding aided AD classification
for both manual and ASR transcriptions across all approaches
investigated.
Index Terms: speech recognition, ASR, Whisper, Alzheimer’s
Disease classification

1. Introduction
Alzheimer’s Disease (AD) is a progressive neurodegenerative
disorder characterised by a decline in cognitive functioning,
with notable deterioration in memory, thought, and language
[1]. It is the most common form of dementia, which affects an
estimated 55 million people globally [2]. Despite the impor-
tance of early identification and intervention for the manage-
ment of the disease, around 75% of cases go undiagnosed [2].

In the past few years, speech-based methods of AD classifi-
cation, which leverage the speech abnormalities associated with
AD, have proven promising at delivering an accurate, sensitive,
and non-invasive means of automatically screening large pop-
ulations for indications of Alzheimer’s dementia [3]. Both the
audio signal (acoustic features) and speech content (linguistic
features) of spontaneous speech have been used in training AD
classifiers using machine learning algorithms and deep learning
approaches. In the recent Alzheimer’s Dementia Recognition
through Spontaneous Speech (ADReSS) challenge [4], systems
based on linguistic features extracted from manual transcrip-
tions were shown to outperform those trained solely on acous-
tic features. Moreover, the inclusion of para-linguistic features,
such as pauses and disfluency markers, was proven to boost
model performance [5, 6, 7, 8, 9].

In the machine learning approaches, of which Support Vec-
tor Machines (SVM) and k-Nearest Neighbors (kNN) were two
of the most popular algorithms, the most prominent linguistic

features were those carrying lexical, semantic and syntactic in-
formation. While there was a notable use of transformer-based
word embeddings in deep learning approaches [5, 6, 7, 9, 10,
11, 12, 13, 14, 15]. As classification of AD using linguistic fea-
tures relies heavily on the fidelity of the speech transcriptions,
manual transcriptions offer the best possibility for training top
performing classifiers. This is due to their high degree of accu-
racy and the ability to encode paralinguistic features within the
text. Nevertheless, the use of manual transcriptions is undesir-
able due to its prohibitive time and resource costs, in addition
to poor scalability.

The recent advances in ASR technologies, such as
wav2vec2.0 [16] and Whisper AI [17], have made ASR-based
transcriptions an increasingly viable option for use in AD clas-
sification, even considering the frequent use of spontaneous
speech. As such, in this paper we investigate whether AD
classification using speech content extracted from ASR-based
transcriptions can perform comparatively to classification us-
ing manual transcriptions. We use the ADReSS dataset as it is
one of the most recent challenges to provide a balanced dataset
which includes manual transcriptions. Few attempts of using
ASR-based transcriptions on the challenge dataset have been re-
ported in literature [18, 19].We use the new state-of-the-art ASR
model, Whisper, to obtain the ASR-based transcriptions. Un-
like the previous widely used model, wav2vec2.0, Whisper pro-
duces transcriptions with punctuation marks included. We make
a novel contribution by exploring the influence of the automatic
punctuation marks on classification results, in addition to pause
encoding. Particularly, we implemented pause encoding using
the timestamp outputs of the WhisperX library, while the only
previous study [19] that incorporated pause encoding to ASR
transcriptions used wav2vec2-base-960h model for ASR and re-
quired an additional model to encode the pauses. We consider
both machine learning and deep learning approaches, using lin-
guistic features extracted by the Linguistic Inquiry and Word
Count (LIWC) text analysis program [20] for machine learning
and word embeddings as part of a deep learning approach. In
the present paper we report on a study we conducted to pursue
this research goal. The research questions we addressed are:
• RQ1. To what extent are ASR-based transcriptions useful for

AD classification compared to manual transcriptions?
• RQ2. To what extent does the use of deep learning outper-

form traditional machine learning approaches for AD classi-
fication?

• RQ3. To what extent does the inclusion of punctuation and
pauses in transcripts aid in AD classification?

The paper is structured as follows; in Section 2 we present
the data and transcription generation process. Section 3 follows
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with a detailed description of the the classifier models used and
the encoding of pause and punctuation information. Experiment
results are reported in Section 4, before findings are discussed
in relation to our research questions, in Section 5. The paper
concludes with a brief overview of the work we have presented.

2. Data
This study was conducted using the dataset provided in the
ADReSS challenge [4]. It consists of recordings of healthy
controls (HC) and participants with AD describing the Cookie
Theft picture from the Boston Diagnostic Aphasia Examination
[21]. The training set includes 108 speakers (2 hours of audio
utterances) and the test set 48 speakers (1 hour of audio utter-
ances), both balanced in terms of gender, age and HC/AD par-
ticipants. The ADReSS data includes the participant’s speech
recordings and the corresponding manual transcriptions. Fur-
ther details of the dataset are described in [4].

The following subsections describe the processing applied
to ADReSS data to obtain the two main data inputs used in this
study: manual and ASR-based transcriptions, and their corre-
sponding word-level timestamps.

2.1. Manual Transcriptions

The manual transcriptions given in the ADReSS challenge were
annotated using the Codes for the Human Analysis of Tran-
scripts (CHAT) format [22]. This coding system includes stan-
dardised ways to transcribe conversations and include meta-
information related to the participant’s behaviour, such as
spelling mistakes, false word starts, noises (e.g. laughs, grunts,
coughs) and filler sounds (e.g. mm, uh).

A first processing step was applied to keep the text cor-
responding to what the participant pronounced in his speech.
Untranscribed words, out of vocabulary terms and anonymisa-
tion tags were mapped to ”unk”. Spelling mistakes, shortened
words and phonetically spelled words were replaced by the reg-
ular form. Symbols representing additional information and
comments were removed. Noises and incomplete/unintelligible
terms were also eliminated but filler sounds were retained.

To obtain word-level timestamps, a Kaldi-based forced
aligner using NNet2 online acoustic models was used to align
processed transcriptions with the audio recordings.

2.2. ASR-based Transcriptions

The recordings in the ADReSS dataset contain elderly speech
with background noise in some cases. Therefore, we decided
to use different state-of-the-art ASR models to determine which
one achieved the best transcriptions for this particular dataset:
Kaldi ASpIRE1, Wav2Vec2 [16] and Whisper [17].

The Kaldi ASpIRE Chain Model was released in 2016
by Kaldi [23]. It uses deep neural networks (DNNs) trained
with the chain training criterion on Fisher English dataset, aug-
mented with impulse responses and noises to create multi-
condition training. The DNNs use a combination of time-delay
neural networks (TDNNs) and bidirectional long short-term
memory (BLSTM) networks to model the spectral and temporal
variations in the speech signal.

The Wav2Vec2.0 model [16], released in 2020, is a
transformer-based model which is first pre-trained using un-
labelled audio only (called self-supervised learning) and then
fine-tuned on transcribed speech. In this work, we used the

1https://kaldi-asr.org/models/m1

cross-lingual approach, which learns speech representations
by pre-training the model using audios in multiple languages.
Specifically, we used the fine-tuned version on English of the
Facebook’s models wav2vec2-xls-r-1b2 and wav2vec2-large-
xlsr-533, both available on HuggingFace.

The Whisper ASR system, recently released by OpenAI, is
a encoder-decoder transformer model pre-trained using 680,000
hours of multilingual data and a multi-task approach for both
speech recognition and speech translation. Without the need
of specific fine-tuning, Whisper generates very accurate tran-
scriptions which also include punctuation. Moreover, the model
provides utterance-level timestamps but word-level timestamps
can be obtained using WhisperX Python library [24], which im-
plements forced alignment using phoneme-based ASR models.
We used both the base4 and large5 versions of Whisper model
available on HuggingFace.

3. Methods
This section is divided in three parts. First, the modelling ap-
proaches applied to the AD classification are described in Sec-
tion 3.1. Then, to study the influence of two factors on the clas-
sification results, the addition of pause information in the mod-
elling approaches is detailed in Section 3.2, and the inclusion of
punctuation marks in the transcriptions in Section 3.3.

3.1. Modelling

Two different modelling approaches were tested. The first based
on feature engineering and classical machine learning algo-
rithms, and the second based on word embeddings and deep
learning models, explained in Section 3.1.1 and 3.1.2, respec-
tively. The classification models were trained and tested using
the corresponding data partitions provided in the ADReSS chal-
lenge. The results were evaluated using the following metrics:
accuracy, precision, recall and F1 score. Their calculation is
detailed in the challenge baseline article [4]. Implementation
details can be found in the accompanying GitHub repository6.

3.1.1. Feature Extraction and Machine Learning

Although deep learning approaches are currently the state-of-
the-art for text classification, we decided to also use a clas-
sical pipeline based on feature engineering (FE) followed by
machine learning (ML) models because it is explainable, less
computationally expensive and achieves good results when few
data are available, as in this case. First, the LIWC feature set
[20] was extracted for each participant’s transcriptions using
the LIWC2015 Dictionary version for English. This dictionary
includes a comprehensive list of words and phrases organised
into over 90 categories related to grammar, cognitive processes,
emotional content and informal language, among others (see
description in [25]) by means of the percentage of words be-
longing to each category with respect to the total number of
words in the transcriptions analysed. LIWC features have been
previously used for AD classification [26, 27, 28]. The features
were standardised and the importance of each feature for clas-

2https://huggingface.co/jonatasgrosman/
wav2vec2-xls-r-1b-english

3https://huggingface.co/jonatasgrosman/
wav2vec2-large-xlsr-53-english

4https://huggingface.co/openai/whisper-base
5https://huggingface.co/openai/whisper-large
6https://github.com/LuciaGomZa/
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sification was determined by means of recursive feature elimi-
nation in order to obtain a rank-ordered list. For one less fea-
ture each time, the following two machine learning models were
trained: Support vector machines (SVM) and k-nearest neigh-
bours (KNN). Leave-One-Subject-Out cross-validation was ap-
plied to select the best hyper-parameters among the values de-
tailed in the GitHub repository. The methods described in this
section were implemented using the sklearn Python library.

3.1.2. Word Embeddings and Neural Network

Neural network based models have transformed the Natural
Language Processing (NLP) field, significantly improving the
state-of-the-art results in numerous tasks, including AD recog-
nition from speech transcriptions [29, 30, 31]. Particularly, text
embeddings provide efficient vector representations of the text
without the need of the time-consuming feature extraction and
selection. Here, transcriptions were lowercased, tokenized and
padded to a maximum length of 250 words based on the word
count distribution of the transcriptions. Then, the pre-trained
FastText embedding trained on Common Crawl [32] was used
to convert the transcriptions of the participants’ responses into
word vectors. These representations then were fed into a neural
network (NN), composed of a bidirectional Long Short-Term
Memory (biLSTM) layer with 128 units that returns all the hid-
den states. A 0.2 dropout rate was used to prevent over-fitting.
After one-dimensional global max pooling, the result was fed
into a dense layer of 64 units and a final binary classification
layer. Due to the relatively small dataset, the results may vary
depending on the model initialisation. Therefore, following the
procedure proposed by [33], the model was run 25 times with
different random seeds. The majority voting of the predictions
was used to set the label of each sample in the test set. The neu-
ral network architecture used the following hyperparameters:
binary cross entropy loss, Adam optimizer, batch size of 10 and
30 epochs. It was implemented using the Keras Python library.

3.2. Pause Information

To include pause information, the modelling approaches de-
scribed above were adapted. For the one based on feature ex-
traction and machine learning, 4 additional features were calcu-
lated: the speech rate, as the ratio between the number of words
in the transcriptions and the audio duration; the total number of
pauses, the mean length of the pauses and the summed pause
durations. These features were added to the LIWC feature set,
and the same pipeline described in Section 3.1.1 was applied.

With regards to word embeddings and neural network, the
raw text is used directly to do the classification. To include
pause information, the pause encoding procedure described in
[33] was applied. First, the original punctuation of both man-
ual and ASR-based transcriptions was removed. Timestamps
from the Kaldi-based forced aligner and WhisperX, respec-
tively, were used to calculate the pauses between the words
in the full speech recordings. Finally, the following encoding
was applied: short pauses (<0.5s) were replace by ”,”; medium
pauses (0.5-2s) were replaced by ”.”; and long pauses (>2s)
were replaced by ”...”. Pauses shorter than 50 ms were ex-
cluded. Once the pauses were included as punctuation marks
in the transcriptions, the pipeline in Section 3.1.2 was applied.

3.3. Punctuation

One of the main differences between state-of-the-art ASR mod-
els using Kaldi, Wav2vec2.0 and Whisper, is that the latter

includes automatic punctuation. When training the machine
learning models considering punctuation, a specific LIWC cat-
egory with 12 features that counts punctuation marks was in-
cluded in the feature set, resulting in 93 features. As for the
neural network, the raw text used as model input was analysed
with and without punctuation marks.

4. Results
In this section, we first present the evaluation of the ASR-based
transcriptions obtained with five state-of-the-art ASR models.
Then, we summarise the AD classification results for the differ-
ent conditions and model approaches described before.

4.1. WER of the ASR Models

In order to determine which ASR model we use for obtain-
ing the automatic transcriptions, we evaluated the three differ-
ent ASR systems, ASpIRE (Kaldi), Wav2vec2 and Whisper, by
means of the Word Error Rate (WER), using the manual tran-
scriptions of the training set as the ground truth. The results are
shown in Table 1, where the mean value for the transcriptions in
the training set is presented, as well as the mean value for AD
and HC groups independently.

Table 1: WER (%) of the ASR models in the training set.

ASR model WER
Mean (std)

WER HC
Mean

WER AD
Mean

ASpIRE 61.43 (22.33) 61.38 61.47
Wav2vec2.0-large-xlsr-53 65.00 (17.67) 61.58 68.43
Wav2vec2.0-xls-r-1b 41.11 (18.11) 38.88 43.33
Whisper-base 44.02 (23.81) 44.08 43.96
Whisper-large 30.18 (21.04) 29.05 31.31

These results show that the WER is higher in the AD
cases for almost all ASR models except for one (43.96% and
44.08%, AD and HC, Whisper-base), as AD patients tend to use
more filler and incomplete words. The Whisper-large model
outperforms the other ASR systems for all three groups: all
(WER=30.18%), HC (29.05%) and AD (31.31%). Therefore,
the ASR-based transcriptions obtained with Whisper-large were
used in the present study for AD classification.

4.2. Classification Results

Table 2 shows the classification results for the different mod-
elling approaches. It includes the evaluation metrics in the test
set, as well as the number of features selected (N) by the ma-
chine learning models. The first two columns of the table indi-
cate whether the model inputs included pause information and
punctuation marks. When studying the pauses, the transcrip-
tions include commas and dots as explained in Section 3.2, but
they correspond to the coding of pauses rather than being con-
sidered punctuation marks in the table.

Better test accuracy results are displayed in Table 2 with
manual transcriptions (ranging from 0.667 to 0.854) than with
ASR-based transcriptions (0.625 to 0.833). In general, higher
test results are obtained with the neural network (accuracy rang-
ing from 0.729 to 0.854) compared to the traditional machine
learning approach (accuracy ranging from 0.625 to 0.830).
However, for ASR-based transcriptions, the best ML result
(0.830, for FE+KNN) is only slightly lower than the best NN
result (0.833, for WE+NN); and both results are marginally out-
performed by the best result for manual transcriptions (0.854,
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Table 2: Testing evaluation metrics for the different modeling approaches, for both manual and ASR transcriptions.

Pauses Punct. Model Manual transcriptions ASR-based transcriptions
N Acc Precision Recall F1 N Acc Precision Recall F1

No No FE + SVM 41 0.708 0.692 0.750 0.720 38 0.750 0.800 0.667 0.727
FE + KNN 40 0.667 0.833 0.417 0.556 14 0.646 0.733 0.458 0.564
WE + NN - 0.792 0.792 0.792 0.792 - 0.729 0.789 0.625 0.697

Yes FE + SVM 36 0.667 0.667 0.667 0.667 27 0.667 0.682 0.625 0.652
FE + KNN 13 0.688 0.765 0.542 0.634 10 0.625 0.667 0.500 0.572
WE + NN - 0.771 0.783 0.750 0.766 - 0.750 0.773 0.708 0.739

Yes - FE + SVM 48 0.771 0.724 0.875 0.792 52 0.809 0.818 0.783 0.800
FE + KNN 15 0.708 0.812 0.542 0.650 12 0.830 0.895 0.739 0.810
WE + NN - 0.854 0.870 0.833 0.851 - 0.833 0.833 0.833 0.833

also for WE+NN). Including pause encoding clearly improves
the results in both manual and ASR-based transcriptions. The
test accuracy for the WE+NN model increases from a maximum
of 0.792 without pauses to 0.854 when they are included for
manual transcriptions and from 0.750 to 0.833 when using the
ASR-based ones. Conversely, punctuation marks do not appear
to have a significant impact on the classification performance.

5. Discussion
The results in Section 4.1 show that the lowest WERs are ob-
tained with the Whisper-large model, i.e. a WER of 30.18% for
the training set. Therefore, we used Whisper-large transcrip-
tions in addition to the manual transcriptions provided by the
ADReSS challenge 2020 to study classification accuracy.

With regard to our first research question, RQ1, not sur-
prisingly, the use of manual transcriptions led to better classi-
fication results in all cases (with or without pauses and with
or without punctuation marks) since the ASR-based transcrip-
tions of doctor-patient consultations are still far from perfect in
comparison to the manual ones due to speech disfluencies, bad
audio quality, background noises or simultaneous speech seg-
ments. However, the accuracy difference between the best man-
ual value (0.854) and the best automatic one (0.833) is small.

As for our RQ2, we reported AD classification results of
deep learning over traditional machine learning approaches over
both manual and ASR-based transcriptions. The first approach
is based on feature engineering and machine learning algo-
rithms with two different classifiers SVM and KNN, in which
we combined Whisper output with LIWC features, pauses and
speech rate. The main advantage of this method is that re-
sults can be interpreted as we selected the features. In fact, we
observed that many features selected by the feature selection
method were plausible. For instance, the speech rate was se-
lected in all the models that included pause information, as AD
participants present longer recordings but shorter transcriptions
compared to HC. Moreover, the ”six or greater letter words”
(Sixltr) category was selected in ten out of the twelve classi-
cal machine learning models tested. When compared to healthy
individuals, those with cognitive deficits tend to use fewer of
these words, a reasonable outcome given their condition [26].

Additionally, we studied the influence of linguistic features
with FastText WE using the raw text as input. In all cases, ex-
cept for the one in which we do not use pauses nor punctuation
information for modelling ASR-based transcriptions, the deep
leaning approach (WE+NN) outperforms the machine learning
methods, being the best results for manual transcriptions 0.854
(WE+NN) and 0.771 (FE+SVM), and the best results for ASR-
based transcriptions 0.833 (WE+NN) and 0.830 (FE+KNN).

Finally, regarding RQ3, we studied the influence of tim-
ing (pauses) information and automatic punctuation provided
by the Whisper-large ASR model in order to determine their
implications on AD classification in comparison to manually-
transcribed data provided by human transcribers. In both cases,
manual and ASR-based transcriptions, and in both learning ap-
proaches (classical machine learning and deep learning), the
isolated use of punctuation marks by itself does not improve the
performance of the classification system; but the use of a pause
encoding procedure in the deep learning models leads increases
the accuracy of the AD classification. This is inline with find-
ings of [19], who apply a pause encoding process based on voice
activity detection. However, we achieve a higher accuracy using
our pause encoding process on both manual transcriptions and
ASR-based transcriptions, 0.854 and 0.833 respectively, com-
pared to the 0.83 and 0.81 achieved by [19]. Our ASR-based
transcription score also outperforms the 0.761 reported by [18].

6. Conclusion
In this work, we have presented and experimentally evaluated
a comparative study and methodology for AD classification us-
ing manual and ASR-based transcriptions. Our method lever-
ages ASR from Whisper-large model and a combination of ma-
chine (LIWC features and SVM and KNN classifiers) and deep
learning approaches (FastText WE and neural network). The
experiments we conducted on the ADReSS dataset have pro-
vided evidence that the use of linguistic features from ASR-
based transcriptions generated by the state-of-the-art, Whisper-
large model, beside a pause encoding procedure, is a plausible
approach for AD classification.

Although the traditional ML models are easier to inter-
pret, the best results come from the deep learning approach,
WE+NN, and for manual transcriptions the accuracy is higher
(0.854) than with ASR transcripts (0.833). Therefore, the
findings demonstrate that linguistic features, extracted from
Whisper-large ASR transcripts, can deliver comparable classifi-
cation results to those obtained from manual transcripts. How-
ever, there is still room for ASR improvement (e.g. finetuning
the ASR model with realistic acoustic AD data). These find-
ings suggest that automatic AD classification, solely based on
speech and language features, is a promising avenue to explore.
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