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Abstract
Existing audio-based asthma monitoring solutions rely on fea-
ture engineering designs paired with contact-based auscultation
which are brittle in practice and do not scale beyond point of
care setups. Data-driven methods utilizing contactless micro-
phones have the potential to address such limitations. These
solutions are under-explored in healthcare due to high cost of
data curation requiring physicians-in-the-loop. Here, we pro-
pose an active learning (AL) system to facilitate audio data col-
lection and annotation. It detects lung sound abnormalities in
asthma. AL reduces the annotation cost while increasing the
model performance under a constrained annotation budget. It
automatically extracts interesting audio segments from the con-
tinuous recordings, and efficiently annotates and trains anomaly
detector model. The experimental results confirm the effective-
ness of the proposed system as an enabler for larger scale data
curation on a newly collected audio corpus for pediatric asthma.
Index Terms: asthma, audio event detection, active learning,
data annotation, healthcare

1. Introduction
Asthma is a chronic respiratory condition affecting more than
300 million children and adults worldwide [1] with a high hos-
pitalization rate during acute episodes. Historically, the defi-
nition of asthma has been subjective [2]; however, there is an
agreement in the physiological response including a tightening
of the muscles around small airways combined with inflamma-
tion in the lung leading to airway obstruction. Common asthma
symptoms include coughing, wheezing, shortness of breath, and
chest tightness. These symptoms may appear intermittently, of-
ten worse at night, and are triggered by various conditions such
as exercise, allergen and irritant exposure, viral infections (e.g.
colds), changes in weather, etc. [3].

Diagnosis of asthma is often based on assessing a patient’s
medical history, identifying patterns of respiratory symptoms,
and more recently blood biomarkers. Additionally, clinicians
may utilize a questionnaire, which is simple and convenient, to
aid in an asthma diagnosis. World-wide initiatives including
the Global Initiative of Asthma (GINA) are using sample ques-
tionnaires to collect data on the frequency and severity of lung
sound abnormalities (e.g. wheezing and coughing) [3]. Despite
health records, questionnaires, and patients’ descriptions, a true
asthma diagnosis remains challenging due to a lack of accepted
universal rules. An asthma diagnosis may vary due to clini-
cians’ experience level, geographic area, and due to the disease
and manifestations changing over time. A true asthma diagno-
sis is especially challenging in young children where question-
naires cannot be used as a reliable tool of choice [2].

Though asthma cannot be cured, a timely diagnosis along

with proper medications and awareness can control the dis-
ease [1]. However, untreated asthma lessens a patient’s quality
of life and can lead to major healthcare costs. Self-awareness
and monitoring are an asthma patient’s best tools in reduc-
ing the impact of the disease on their life. Self-monitoring is
subjective, particularly with patients that have caregivers (e.g.
children), and can lead to a misdiagnosis and ultimately poor
treatment. An automatic, data-driven, at-home asthma condi-
tion monitoring system that is non-invasive, cost-effective, and
patient-friendly can play an important role in disease control
and promote remote medical care which has become increas-
ingly popular since the COVID-19 Pandemic [4].

The usage of data-driven approaches in asthma detection
can be categorized into four major groups: screening and di-
agnosis, patient classification, monitoring, and treatment. Var-
ious data resources and modalities have been utilized for each
including lung sounds from auscultation, medical history docu-
ments, patterns of symptoms, environmental data, and question-
naires. Most studies in this space utilize smaller datasets due
to the difficulty in collecting data on the target population and
the cost in terms of time and resources. Developing robust tra-
ditional machine learning applications or deep-learning based
approaches to flag an asthma condition becomes difficult with
such sparse data, and poses a critical concern of an experiment’s
validity and generalizability [5]. Audio data collection can be
non-invasive, cost effective, and patient friendly. Hence, a non-
contact, automatic lung sound abnormality assessment system
can be seamlessly integrated into the patient’s life to simplify
at-home self-monitoring and reduce human errors.

Existing literature in lung sound recognition and character-
ization includes algorithms, pipelines, and methodologies for
cough detection [6, 7], wheeze recognition [8–10], respiration
phase characterization [11, 12], onset detection of drug inhala-
tion [13], and asthma detection using speech signals [14, 15].
Most studies propose a combination of normalization, filtering,
and pre-processing to emphasize the sound of interest within
the recorded respiratory sounds. Mel Frequency Cepstral Co-
efficients (MFCCs) and Linear Predictive Coding (LPC) coeffi-
cients are typically employed as features. Most recent works
rely on supervised learning techniques to train linear classi-
fiers [8, 16], Gaussian models [17], or shallow neural net-
works [18,19] tailored to the downstream task [5,10,13,20,21].

Although early studies demonstrate the existence of asthma
fingerprints in audio signals, the experiments are typically per-
formed on small datasets, with limited scope, and with special-
ized equipment (e.g. stethoscopes or wearable devices), which
becomes a challenge to scale to an in-home concept that could
seamlessly integrate into a patient’s life. Moreover, through our
preliminary work, we have observed radically different lung
sounds when recorded via a non-contact microphone versus a
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Figure 1: Proposed system for large scale audio data collection and annotation via active learning framework.

stethoscope. In particular, for pediatric patients, soft sounds
such as breathing are almost indistinguishable within the back-
ground noise when collected with a non-contact microphone,
while wheezing sounds are also not as well identifiable when
compared to contact stethoscope acquisitions.

Despite the clear advantage of creating an automatic lung
sound assessment system for asthma monitoring, the field re-
mains under-explored due to a lack of large scale data availabil-
ity. Collecting lung sound data from asthmatic patients was lim-
ited in the literature due to: 1) the required expertise and com-
plexity of the necessary hardware, often in the form of multiple
contact sensors or stethoscope auscultation, 2) the chronic na-
ture of asthma which requires long-term data recordings, and 3)
expensive data annotation cost of the rare lung sound abnormal-
ities during long recordings, requiring the expertise of special-
ized physicians or trained individuals. Increasing the potential
of audio-based data-driven approaches to support clinical deci-
sion making in healthcare applications hinges on collecting and
annotating new datasets in a reasonable time frame from large
and diverse populations is critical to train robust and generaliz-
able models.

Motivated by this, we propose a system to enable large au-
dio data collection and annotation based on active learning (AL)
for assessing lung sound abnormalities. The proposed system is
made of three main components: 1) a pool of unlabeled data
from continuous audio recordings – from a controlled or in-the-
wild data collection setup; 2) automatic data segmentation to
extract audio chunks containing relevant audio events or sounds
of interest from the unlabeled data stream; 3) an AL pipeline
to efficiently annotate the data while reducing the human effort
and increasing the modeling performance under a constrained
annotation budget. While we perform the experiments on a
pool of audio data collected for a pediatric asthma use case, we
expect the proposed framework to enable more scalable data
collection and annotation in other audio abnormality detection
tasks in the healthcare domain. To the best of our knowledge,
this is the first work utilizing active learning framework in audio
health care applications.

2. Proposed System
Figure 1 shows the overall proposed system for enabling large
scale audio data collection and annotation for healthcare appli-
cations via an Active Learning (AL)framework. The first step
of the system includes continuous audio data collection in-the-
wild (e.g. at-home, doctor’s office) using far-field non-contact

microphone(s) to reduce the need for specialized sensors (e.g.
stethoscope). Next, depending on the dataset size, we manually
segment the continuous data into audio chunks or utilize pre-
trained models to automatically extract the desired segments.
Finally, we use the generated unlabeled pools of audio samples
in the AL pipeline to efficiently annotate the target audio events
thus capitalizing on expert annotators’ (e.g. physicians) time
with a limited annotation budget. We explain the details of each
component below. We detail each component in the next few
sections.

2.1. Automatic Segmentation

During automatic segmentation, we use an existing pre-trained
model to extract target audio events from a stream of data for
later processing steps. For this study, we use pre-trained au-
dio neural networks (PANNs) [22] to propose segments for
our desired events. PANNs provide convolutional neural net-
works (CNNs) based architectures and are trained (supervised)
on AudioSet [23], a massive general audio dataset contain-
ing 1.9 million audio clips with an ontology of 527 sound
classes, including some relevant to clinical biomarkers (e.g.
cough, breath, heart sound) We adopt the pre-trained model
Cnn14 DecisionLevelMax, outputting frame-wise sound event
detection (SED) scores for all 527 classes every 10ms. We take
the predictions of our target events, apply a threshold for binary
predictions, and group consecutive positive predictions to ac-
quire the information of onsets and offsets for each segment of
the desired sound events.

2.2. Efficient Data Annotation and Anomaly Detection with
Active Learning

Active learning (AL) is a machine learning solution that pri-
oritizes the data to be labeled for optimizing the labeling cost
while increasing the model robustness for use cases in which
data annotation is costly and time consuming. In this current
study, the labeling budget is the number of samples that human
annotators can manually label. Hence, AL frameworks develop
labeled training data in an iterative manner with less manual
annotation effort leading to a more robust model.

AL has been previously used in various audio and speech
tasks, from automatic speech and emotion recognition, to sound
event classification [24–28]. The applications of AL in the med-
ical domain are more limited to a few works on medical imaging
and medical text classification [29–31]. To our knowledge, AL
has not been explored in audio-enabled healthcare applications,
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where the cost of data annotation is particularly high.
As shown in Fig. 1, an AL framework consists of the

following iterative steps: 1) Applying an unsupervised/semi-
supervised ranking method to sort unlabeled data samples by
assigning higher scores to more informative samples; 2) Re-
trieving a subset of the ranked samples based on the available
annotation budget, B, of the expert human annotator; 3) Anno-
tating the retrieved samples by human expert(s); 4) Training or
fine-tuning a classification or anomaly detection model based
on the collected annotations and the available unlabeled data;
5) Re-iterating steps 1 to 4 until the desired model performance
is achieved. In healthcare applications, we often look for the
presence of anomalies in the audio data (e.g., the presence of
wheezing during cough, murmur in heart sound). To aid in this
type of detection, we integrated a few-shot anomaly detection
method in the AL pipeline as detailed below.

2.2.1. Anomaly detection with Deviation network

We use a Deviation Network (DevNet) originally introduced
in [32] as a few-shot anomaly detection method for image ap-
plications. DevNet is a semi-supervised method that predicts
anomaly scores in an end-to-end manner versus previous works
that learn representative features to separate normal vs abnor-
mal examples [33], which makes DevNet a great sampling strat-
egy and a strong candidate to be used in an AL pipeline. De-
vNet deploys a neural anomaly score learner network to assign
anomaly scores to each sample. The network is first trained un-
supervisedly by assigning normal scores to all the training sam-
ples. The experiments in [32] confirm the robustness of DevNet
with respect to anomaly contamination in the training set dur-
ing the initial step. Next, it defines an average anomaly score of
the normal data based on prior probabilities (e.g., Gaussian dis-
tribution) as a reference score to guide the subsequent anomaly
score learner. Finally, DevNet introduces a bias loss to enforce
statistically significant deviation of anomaly scores of the ab-
normal data, while having the scores of the normal data close to
the mean of the Gaussian prior.

3. Data collection and experiments
To evaluate the performance of the proposed system, we have
collected clinical pediatric audio data for identifying pediatric
asthma. The experiments are designed to detect cough in-
stances and the presence of wheezing within the cough as two
main characteristics of asthma within the collected respiratory
sounds. The experiments assess the efficiency of automatic data
segmentation and AL pipeline for the target sound events.

3.1. Data Collection

The audio samples utilized in this study are a subset of the
collected data in collaboration with Highmark Health and Al-
legheny Health Network (AHN) after the institutional review
board (IRB) approval. The data is collected in a physician’s
office after the patient’s scheduled appointment, under typical
noise conditions of a healthcare facility. All participants’ care-
givers gave consent prior to enrolling. The corpus contains sam-
ples from 8 healthy (non-asthma), 10 non-asthma with a respira-
tory cold, and 9 with diagnosed asthma between 3 and 11 years
old. The participants with asthma are on treatment medications.
No other co-morbidities were present in the participants. Ad-
ditional information such as height, weight, BMI, temperature,
medication, and gender are also available for each participant.

Audio data were recorded at a sampling rate of 44.1 kHz

for a range of tasks with a portable hardware setup of a far-field
microphone connected to a laptop and placed on a desk ∼ 0.2
m away from each participant. The data collection is divided
into 5 tasks: (1) reciting ABCs, (2) reciting numbers one to ten,
(3) pronouncing the vowel /ah/, (4) naming two favorite colors,
(5) naming two favorite foods, (6) coughing, (7) deep breath-
ing, and (8) sitting silent. During deep breathing and sitting
silent, a digital stethoscope, EKO1, is used to collect ground
truth data accompanying microphone data. Doctors performed
each recording by instructing each participant to perform each
task while the participant was accompanied by a caregiver.

The audio recordings are segmented and labeled for each
task by two human annotators. The quality of the segments is
then verified by an independent annotator. The obtained seg-
ments have variable lengths depending on the nature of the task
and the individual participants. In a second round of data an-
notation, a pediatric specialist labeled the cough samples for
the presence of wheezing. After data labeling and validation,
in total we obtain 152 individual cough segments from which
18 segments contain wheezing, 41 individual /ah/ segments, 23
breathing segments, 25 ABC segments, 26 counting to ten seg-
ments, 26 naming two favorite food segments, 26 naming two
favorite color segments, and 22 silent segments.

3.2. Evaluation of the Automatic Segmentation Method

In this section, we evaluate the effectiveness of the automatic
segmentation method using the PANNs pre-trained model on
collected data as well as a synthesized cough dataset to simulate
the use case of health monitoring in-the-wild.

Table 1: SED results for the collected data and synthesized
soundscapes in-the-wild.

Data Event Precision Recall F1-score

Collected data Cough 0.71 0.89 0.79
Soundscapes 0.94 0.41 0.57

To generate the synthesized data, we obtained cough sam-
ples from the COUGHVID dataset [34], taking those shorter
than 5 seconds with confidence (cough detected) higher than
0.85, resulting in ∼2k samples as foreground events. We
also utilized the Domestic Environment Sound Event Detection
(DESED) evaluation dataset2 [35] for background scenes. The
DESED data contains mixtures of sounds present in daily life
(e.g. alarms, dishes, vacuums, etc.) to mimic the domestic en-
vironments in which cough events may take place when actually
monitoring. We generate a total of 2,000 soundscape mixtures,
1,000 mixtures for validation and 1000 mixtures for evaluation.
We use separate foreground and background sounds to gener-
ate each set. We utilize scaper3 with default configurations as
provided by the tutorial so that each soundscape contains 1 to 3
cough events. We then compute segment-based sound event de-
tection metrics for cough sound prediction using sed eval4 with
time resolution = 1.0.

To determine the prediction probability threshold, we use
the synthesized validation set, and sweep between threshold val-
ues from 0.05 to 0.9, with a step size 0.05. Subsequently, we

1https://www.ekohealth.com/
2https://zenodo.org/record/5524373
3https://github.com/justinsalamon/scaper
4https://github.com/TUT-ARG/sed_eval
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Figure 2: Accumulated accuracy rate of the learned anomaly
detection model as function of AL iteration and annotation bud-
get.

find that threshold = 0.1 yields the best F1-score and use this
threshold for both the collected and the synthesized evaluation
data.

As per Table 1, the selected pre-trained audio model per-
forms well (both precision and recall) on the collected data
which was collected in a controlled environment. This indicates
that our proposed model is a good candidate for the initial seg-
mentation of the collected cough events. Looking at the cough
events detected in the synthesized soundscapes in a domestic
environment, we see that the precision is still good. However,
the recall drops significantly. This is mostly caused by the chal-
lenging scenario of overlapping sounds occurring simultane-
ously in daily life, as well as other objects sounding similar to
the impulse characteristics of coughing. Nonetheless, the anal-
ysis provides a clear path forward to addressing this challenge
in future work.

3.3. Evaluation of the Active Learning Pipeline

Baseline As a baseline system for ranking and training steps of
the AL pipeline, we extracted MFCCs from the raw audio sig-
nal. The audio is downsampled to 16 kHz and MFCCs are ex-
tracted with a Hamming window size of 512, a hop size of 160
samples, 20 MFCC coefficients, and 50 Hz and 8 kHz lower and
upper cut-off frequencies. We expose outliers with a K-Means
clustering algorithm for unsupervised ranking in the first itera-
tion of the AL pipeline, and a Linear Regression (LR) model as
supervised training and ranking method in later iterations, when
labeled samples are available.

Devnet The implementation of DevNet is taken from its of-
ficial release 5 with the variation of substituting the backbone
architecture with an audio pre-trained model. We use PANNs
backbone [22] without the last fully connected layer as a fea-
ture extractor, specifically the CNN14 model with a 16 kHz
sampling rate. The input of PANNs is a log Mel spectrogram
extracted from the raw audio signal with a Hamming window
size of 512, a hop size of 160 samples, 64 Mel filter banks,
and 50 Hz and 8 kHz lower and upper cut-off frequencies. De-
vNet learns the anomaly scores by passing the feature map to
a 1 × 1 convolutional layer, followed by a top-K Multiple In-
stance Learning (MIL)-based anomaly score optimization using
the proposed deviation loss [32]. As a result of the deviation
loss, during the inference phase the final model assigns large
anomaly scores to the samples as long as their features deviate
significantly from the normal samples’ features.

5https://github.com/Choubo/
deviation-network-image

The results of the AL pipeline, illustrated in Fig. 2, show
the accuracy rate of retrieving wheezing events, which com-
prises 11% of the collected cough samples, as a function of
the AL iteration and annotation budget for two training meth-
ods based on DevNet and MFCC-LR. Annotation ”budget x”
in the plots indicates the human annotator only labels ”x” sam-
ples in each AL iteration. Note that in the MFCC-LR plot, the
reported numbers for iteration 1 are based on outlier exposure
via the K-Means clustering approach with MFCC features, due
to a lack of available annotated data. Both DevNet and MFCC-
LR based methods can fully retrieve wheezing samples with-
out annotating the entire dataset. Though, DevNet can reach a
higher retrieval accuracy (defined as the accumulative retrieved
wheeze samples/total number of wheeze samples) in fewer iter-
ations and, thus, a lower total annotation cost.

For the collected dataset, the MFCC-LR method has an an-
notation cost of around 40%, meaning that we need to annotate
approximately 40% of the entire dataset to retrieve each of the
existing wheeze samples. Conversely, the DevNet method has
an annotation cost of approximately 26% of the data size for
complete retrieval. Note that the accuracy line of the MFCC-LR
method with ”budget 5” remains 0 throughout the iterations, in-
dicating the model was not able to retrieve any wheeze data in
the first iteration and hence could not improve the performance
in later AL iterations. For comparison, we calculate the anno-
tation cost of random sampling with the annotation budgets of
5, 10, 15, and 20 samples at each AL iteration. The random
sampling method requires a minimum labeling of 98% of the
data to retrieve each wheezing instance. The random sampling
experiments are repeated 20 times.

The above experiments show the effectiveness of the au-
tomatic audio segmentation and AL learning pipeline in effi-
ciently labeling and detecting anomalous events in the data,
hence enabling larger scale audio data collection for healthcare
applications moving forward.

Next Steps We plan to expand our work by enhancing
the automatic segmentation approach in the presence of back-
ground noise. We would like to investigate the presence of
asthma audio fingerprints in the other tasks of the collected data
such as speech and breathing. Finally, we would like to incorpo-
rate the proposed system for a large-scale audio data collection
in-the-wild beyond the controlled environment of a physician’s
office.

4. Conclusion
Timely diagnosis of asthma combined with continuous moni-
toring may have a significant impact on disease management
and lessen the burden on a patient’s life. Audio-based monitor-
ing solutions are great candidates to be integrated into a general
monitoring system considering the abnormal, symptomatic res-
piratory sounds in asthma. However, these solutions are still
under-explored due to a lack of available datasets to train robust
and generalizable data-driven models. Here, we proposed a data
collection and annotation strategy to enable large scale, clinical
audio data curation using an Active Learning framework based
on non-contact microphone(s) recordings. Two main compo-
nents of this system are automatic data segmentation to extract
target segments from the recorded audio stream and an Active
Learning pipeline for efficient data annotation and anomaly de-
tection. We evaluated the system on collected audio data for
pediatric asthma. The experimental results show the effective-
ness of the proposed approach in reducing human annotation
effort while retrieving target anomalous sounds.
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