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Abstract
A key challenge in dysarthric speech recognition is the

speaker-level diversity attributed to both speaker-identity re-
lated factors (e.g. gender) and speech impairment severity.
Most prior researches on addressing this issue focused on us-
ing speaker-identity only. To this end, this paper proposes a
novel set of techniques to use both severity and speaker-identity
in dysarthric speech recognition: a) multitask training incorpo-
rating severity prediction error; b) speaker-severity aware aux-
iliary feature adaptation; and c) structured LHUC transforms
separately conditioned on speaker-identity and severity. Ex-
periments conducted on UASpeech suggest incorporating ad-
ditional speech impairment severity into state-of-the-art hybrid
DNN, E2E Conformer and pre-trained Wav2vec 2.0 ASR sys-
tems produced statistically significant WER reductions up to
4.78% (14.03% relative). Using the best system the lowest pub-
lished WER of 17.82% (51.25% on very low intelligibility) was
obtained on UASpeech.
Index Terms: Disordered Speech, Speech Recognition,
Dysarthric Speech, Speech Impairment Severity

1. Introduction
In spite of the rapid development of automatic speech recog-
nition (ASR) techniques targeting normal speech in recent
decades, accurate recognition of dysarthric speech remains a
highly challenging task to date [1–28]. Dysarthric speech im-
poses several challenges to current deep learning based ASR
techniques prevailingly targeting normal speech. These in-
clude: a) data scarcity due to the difficulty in collecting a large
amount of such speech from dysarthric speakers who often suf-
fer from physical disabilities and mobility issues; b) mismatch
against healthy speech; and c) large diversity among dysarthric
speakers, when sources of variability commonly found in nor-
mal speech including accent or gender are aggregated with
those over speech impairment severity. For example, dysarthric
speakers of very low speech intelligibility exhibit clearer pat-
terns of articulatory imprecision, decreased volume and clar-
ity, increased dysfluencies, slower speaking rate and changes in
pitch [29], while those diagonalized with mid or high speech
intelligibility are closer to normal speakers. Such heterogene-
ity further increases the mismatch against normal speech and
the difficulty in both speaker-independent (SI) ASR system de-
velopment using limited impaired speech data and fine-grained
personalization to individual users’ data [3, 25, 30].

So far the majority of prior researches to address the
dysarthric speaker level diversity have been focused on us-
ing speaker-identity only either in speaker-dependent (SD) data

* Part of this work was done while the author was an intern at
Tencent AI Lab.

augmentation [7, 9, 13, 14, 18, 27], or in speaker adapted or de-
pendent ASR system development [1, 3, 4, 7, 11–13, 19, 22, 25,
31–33]. In contrast, very limited prior researches have used
speech impairment severity information for dysarthric speech
recognition. Dysarthria severity-dependent GMM-HMM state
distributions were proposed in [2]. Severity-dependent MLLR
and CMLLR adaptations were studied in the context of GMM-
HMM models in [34]. Severity-dependent tempo perturbation
of dysarthric speech to match healthy speech was investigated
in [35]. Speech impairment severity was also used in multi-
speaker text-to-speech (TTS) systems to control pitch, energy
and duration when synthesizing additional dysarthric training
speech data for ASR system development [36]. However, there
is a notable lack of solutions that can account for the dysarthric
speech data heterogeneity that is attributed to both speaker-
identity and speech impairment severity. In particular, the use
of speech impairment severity in current end-to-end (E2E) and
pre-trained ASR systems has been rarely visited.

To this end, this paper investigates a novel set of tech-
niques to incorporate speech impairment severity into state-of-
the-art hybrid DNN [13], end-to-end Conformer [37] and self-
supervised learning (SSL) based pre-trained Wav2vec 2.0 [38]
ASR systems. These include the use of: a) multi-task [39]
training cost interpolation between the ASR loss and speech im-
pairment severity prediction error; b) spectral basis embedding
(SBE) [11,25] based speaker-severity aware adaptation features
that are trained to simultaneously predict both speaker-identity
and impairment severity; and c) structured learning hidden units
contribution (LHUC) [40] transforms that are separately condi-
tioned on speaker-identity and impairment severity. These are
used to facilitate both speaker-severity adaptive training of ASR
systems and their test-time unsupervised adaptation to both fac-
tors of variability. Learning both speech impairment severity
and speaker-identity serves as a dual-purpose solution. First,
it allows speaker and impairment severity invariant “canonical”
ASR systems to be constructed. Second, these two sources of
variability can be flexibly factored in and combined for fine-
grained adaptation to diverse dysarthric speakers.

Experiments were conducted on the largest available and
most widely used UASpeech [41] dysarthric speech dataset. Ex-
perimental results suggest the incorporation of speech impair-
ment severity produced statistically significant [42] word error
rate (WER) reductions up to 3.95%, 4.78% and 4.37% absolute
(12.56%, 14.03% and 16.53% relative) for hybrid DNN, E2E
Conformer and cross-domain fine-tuned Wav2vec 2.0 models.
Modeling both severity and speaker-identity produced further
improvements. The lowest published WER of 17.82% (51.25%
and 17.41% on very low and low intelligibility) was obtained
on the UASpeech test set of 16 dysarthric speakers by com-
bining the best-performing hybrid DNN, E2E Conformer and
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fine-tuned Wav2vec 2.0 systems via two pass rescoring [43].
The main contributions of the paper are summarized below:
1) To the best of our knowledge, this paper presents the first

work of systematically incorporating speech impairment sever-
ity into hybrid DNN, E2E Conformer and cross-domain fine-
tuning of Wav2vec 2.0 pre-trained ASR models for dysarthric
speech recognition. A set of novel techniques and recipe config-
urations were proposed to learn both speech impairment sever-
ity and speaker-identity when constructing and personalizing
these systems. In contrast, prior researches mainly focused on
using speaker-identity only in speaker-dependent data augmen-
tation [7,9,13,14,18,27] and speaker adapted or dependent ASR
system development [1,3,4,7,11,13,19,22,23,25,31–33]. Very
limited prior researches utilized speech impairment severity in-
formation [2,11,25,34–36]. None of these was conducted in the
context of fine-tuning state-of-the-art pre-trained ASR models
for dysarthric speech recognition, as considered in this paper.

2) The final system combining the best-performing hybrid
DNN, E2E Conformer and fine-tuned Wav2vec 2.0 systems via
two pass rescoring gave an overall WER of 17.82% on the
UASpeech test set of 16 dysarthric speakers. This is the best
performance reported so far on UASpeech as far as we know.

2. Incorporation of Speech Impairment
Severity into Hybrid ASR Systems

In this section, we propose a novel set of techniques to incor-
porate speech impairment severity into the hybrid DNN [13]
systems (Fig. 1). These include the use of: 1) speaker-severity
aware auxiliary features serving as front-ends; 2) structured
learning hidden unit contributions (LHUC) transforms sepa-
rately conditioned on speaker-identity and severity; and 3) mul-
titask learning incorporating severity prediction error.
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Figure 1: Incorporating speech impairment severity (seve.) into
the hybrid DNN system via (a) model input using speaker-
severity aware auxiliary features, (b) structured speaker-
severity LHUC transforms, and (c) model output using multi-
task training with severity prediction error.

2.1. Speaker-Severity Aware Auxiliary Features

The underlying variability of dysarthric speech manifesting in
changes of spectral envelope, volume reduction, and impre-
cise articulation, can be modeled via disentangling the speech
spectrum into time-invariant and time-variant subspaces [11,30]
learned in a supervised manner [11, 25]. The resulting spectral
basis deep embedding (SBE) features are more effective in en-
coding latent attributes of impaired speech [25] than classical
speaker embeddings such as iVectors [44] and xVectors [45].
Hence, we adopt SBE features as speaker-severity aware aux-
iliary inputs to the hybrid DNN systems to incorporate both

speaker-identity and impairment severity into the front-ends.
Following [11], singular value decomposition (SVD) is first

conducted on the speech spectrum to generate decomposed
spectral and temporal subspaces. Top-2 bases from the spec-
tral subspace are then fed into a 3-layer DNN embedding net-
work (Fig. 1 upper) with severity levels and speaker IDs as
targets [25]. During training, the 25-dim compact features ex-
tracted from the last bottleneck layer serve as the auxiliary fea-
tures (Fig. 1 red bold line). During test time evaluation, spectral
bases of impaired speech utterances are fed into the trained em-
bedding network to generate auxiliary features and also predict
the speech impairment severity level for each test speaker.

2.2. Structured Speaker-Severity LHUC Adaptation

LHUC [40] adaptation can model the large variability among
dysarthric speakers [9, 13], with speaker-dependent LHUC
transforms applied to DNN hidden layers. Inspired by the
factorized LHUC representations respectively modeling the
speaker and the acoustic environment [40], we propose struc-
tured speaker-severity LHUC adaptation separately conditioned
on speaker-identity (As

spkr) and speech impairment severity
(As

seve). Such LHUC transforms are further restricted as diag-
onal matrices to reduce the number of parameters [40], equiv-
alent to using scaling vectors to modify the amplitudes of the
ReLU activation in the first layer of the DNN (Fig. 1 (b)).

Let rs
spkr and rs

seve denote the speaker-dependent and
severity-dependent scaling vectors for speaker s. The hidden
layer output adapted to speaker s is given as [change]:

hs = ξ(rs
spkr)⊙ ξ(rs

seve)⊙ h (1)

where ⊙ is the Hadamard product and ξ(·) is the element-
wise 2×sigmoid(·). During unsupervised test time adaptation,
severity levels of test speakers are automatically assessed using
the spectral basis embedding network (Fig. 1 black bold line).

2.3. Multitask Learning

Multitask learning (MTL) [39] is proven to be helpful in im-
proving the generalization ability of each task [46]. To this end,
incorporating severity prediction error in the training criteria of
the DNN ASR systems can help produce a neutral, canonical
model that is invariant to speech impairment severity. An inter-
polation between the cross entropy (CE) loss on the frame-level
tied triphone states (tri-states) (LTri), monophone alignments
(LMono) and speech impairment severity levels (LSeve) is uti-
lized as the multitask loss function, given as:

LMTLDNN = ω1·LTri + ω2·LMono + ω3·LSeve
1 (2)

Incorporating LSeve increases the generalization ability of
the model to test speakers with diverse severity levels. During
test time adaptation, the unsupervised severity label of the test
speaker is derived from automatic assessment via the spectral
basis embedding network (Fig. 1 blue bold line).

2.4. Severity-Dependent Systems with KLD Regularization

Motivated by [2] where separate GMM-HMM acoustic mod-
els are trained for each severity group, we develop severity-
dependent DNN systems as an ablation study. To prevent over-
fitting to the limited amount of severity-dependent data, we fur-
ther introduce Kullback-Leibler divergence (KLD) based reg-
ularized adaptation [47] by adding the KLD between the out-

1Weights are empirically set as ω1 = ω2 = ω3 = 1
3

.
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Figure 2: Incorporating speech impairment severity into the E2E Conformer system (left) using (a) speaker-severity aware auxiliary
features and (b) multitask training with severity prediction error. Speech impairment severity is incorporated during the fine-tuning of
the E2E Wav2vec 2.0 pre-trained system (right) via multitask learning. Components of the severity module are shown in the middle.

put distributions of the unadapted SI and the severity-dependent
models into the training cost. This is given as:

LKLD = (1− λ)L+
λ

N

N∑

t=1

pSI(yt|xt) log p(yt|xt) (3)

where L is the standard CE loss to train a DNN model and
N is the number of frames. pSI(·) is the output distribution of
the SI model. λ is a tunable regularization weight empirically
set to 0.5 in the experiments.

3. Incorporation of Speech Impairment
Severity into E2E Systems

3.1. E2E Conformer Systems

We incorporate speech impairment severity into E2E Con-
former systems through two approaches: 1) using speaker-
severity aware auxiliary features (Fig. 2 left (a)) and 2) adding
a CE-based severity prediction error LSeve into the training cri-
teria (Fig. 2 left (b)). The MTL training cost is given as:

LMTLCONF = α1·LCTC + α2·LAED + α3·LSeve
2 (4)

where LCTC and LAED denote the Connectionist Tempo-
ral Classifcation loss [48] and the attention-based loss [49].

3.2. Fine-tuning of SSL Wav2vec 2.0 pre-trained Systems

CE-based severity prediction error in the training cost during
the cross-domain fine-tuning of SSL-based Wav2vec 2.0 pre-
trained systems (Fig. 2 right). The MTL criterion is given as:

LMTLW2V = β1·LCTC + β2·LSeve
3 (5)

4. Experiments and Results
4.1. Task Description

The UASpeech [41] corpus is the largest publicly available and
widely used dysarthric speech dataset. It is an isolated word
recognition task containing 103h speech from 16 dysarthric and
13 control speakers. The dysarthric speakers are further divided
into speech intelligibility subgroups “very low”, “low”, “mid”
and “high”. For each speaker, the data is split into three blocks
B1, B2 and B3, each with the same 155 common words and a
different set of 100 uncommon words. The training set includes
the data from B1 and B3 of all 29 speakers (69.1h), while the
test set includes the data from B2 of all 16 dysarthric speakers
(22.6h, excluding speech from control speakers). Silence strip-
ping using an HTK [50] trained GMM-HMM system [13] pro-
duces a 30.6h training set (99195 utt.) and a 9h test set (26520
utt.). Data augmentation via speed perturbation [9] produces a

2Weights are empirically set as α1 = α2 = α3 = 1
3

.
3Weights are empirically set as β1 = β2 = 1

2
.

130.1h augmented training set (399110 utt.). As E2E systems
are sensitive to the training data coverage (Sys.2 vs. Sys.1 in
Table 3-4), B2 data of the 13 control speakers are further folded
in during the training of Conformer and fine-tuning of Wav2vec
2.0 systems following [24]. This produces a 40h unaugmented
(122392 utt.) and a 190h augmented training set (538292 utt.).

4.2. Experiment Setup

Hybrid DNN systems: The 7-layer hybrid DNN systems were
implemented using Kaldi [51] following [13]. The inputs were
80-dim filter-bank (FBK) + ∆ features, optionally plus 25-dim
speaker-severity aware auxiliary features.
E2E Conformer systems: The graphemic Conformer systems
were implemented via ESPnet [52]4. The inputs were 80-dim
FBK + ∆ features, optionally plus 25-dim auxiliary features.
Wav2vec 2.0 pre-trained systems: The Wav2vec 2.0 pre-
trained systems (Fig. 2 right) contained three components: 1) a
speech feature encoder with CNN convolution blocks, 2) a con-
textual transformer network and 3) a quantization module. The
inputs were raw speech waves. During pre-training, an interpo-
lation between the contrastive and the diversity loss was used
to train the model. During fine-tuning, the CTC loss, optionally
with an interpolation of the severity prediction error, was used.
The large Wav2Vec 2.0 model5 pre-trained using 60k hours of
Libri-light data and fine-tuned using 960h Librispeech data was
used as the base for cross-domain fine-tuning on UASpeech.

4.3. Result Analysis

Table 1 shows the performance comparison6 on the 30.6h train-
ing set between separately trained severity-dependent DNN
models, speaker-independent (SI) models, and models with
severity incorporated via auxiliary features, multitask learning
or structured LHUC transform. Several trends can be observed:
1) The SI system (Sys.3) outperforms the severity-dependent
systems (Sys.1-2) and thus is chosen as the baseline for fur-
ther experiments. 2) Incorporating severity via auxiliary fea-
tures, multitask learning, or structured LHUC transforms into
the systems (Sys.4-6) all produce statistically significant im-
provements over the SI baseline (Sys.3). Combining two ap-
proaches (Sys.7-9) produce WER reductions up to 3.95% abso-
lute (12.56% relative) over the baseline (Sys.7 vs. 3). Combin-
ing all three approaches (Sys.10) leads to no further improve-
ment. 3) When further combined with LHUC-SAT speaker
adaptation, similar trends are observed (Sys.12-14,15-17,18 vs.
Sys.11). A similar set of experiments on the 130h augmented
training set serve to further evaluate the above techniques pro-

412 encoder layers + 12 decoder layers, feed-forward dim = 2048,
4 attention heads of 256 dimensions.

5https://huggingface.co/facebook/wav2vec2-large-960h-lv60
6A matched pairs sentence-segment word error (MAPSSWE) based

statistical significance test [42] was done at significance level α = 0.05.
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posed for modeling severity, as shown in Table 2.

Table 1: Performance of incorporating severity into DNN mod-
els on the 16 UASpeech dysarthric speakers using the 30.6h
training set. “Aux. Feat.” and “Trn. Tar.” denote auxil-
iary feature and training target. “Seve.” and “Intel.” stand
for severity and intelligibility. † denotes a statistically signifi-
cant improvement (α = 0.05) is obtained over the comparable
baseline systems without using severity information (Sys.3,11).

Sys. Model KLD #Hrs
Impair. Seve. LHUC

SAT
(Spkr)

WER%
Aux.
Feat.

Trn.
Tar.

LHUC
(Seve.)

Intel. Subgroup
Unseen Seen All

VL L M H
1 Seve.

DNN
✗

30.6
✗ ✗ ✗ ✗

70.96 35.29 26.35 11.05 47.47 23.60 32.96
2 ✓ 70.14 34.84 25.76 10.52 46.67 23.15 32.37
3 DNN / ✗ ✗ ✗ ✗ 69.82 32.61 24.53 10.40 46.18 21.94 31.45
4

DNN / 30.6

✓ ✗ ✗ ✗ 64.43† 29.71† 19.84† 8.57† 42.82† 18.51† 28.05†

5 ✗ ✓ ✗ ✗ 69.09† 29.35† 21.01† 9.78† 43.43† 20.62† 29.57†

6 ✗ ✗ ✓ ✗ 67.21† 29.67† 20.82† 9.07† 43.16† 19.83† 28.98†

7 ✓ ✓ ✗ ✗ 63.83† 28.00† 19.80† 8.68† 41.71† 18.33† 27.50†

8 ✗ ✓ ✓ ✗ 67.18† 30.18† 21.27† 9.00† 43.57† 19.87† 29.17†

9 ✓ ✗ ✓ ✗ 64.56† 28.97† 19.01† 8.53† 42.49† 18.17† 27.71†

10 ✓ ✓ ✓ ✗ 64.52† 28.77† 19.90† 8.31† 42.33† 18.33† 27.75†

11

DNN / 30.6

✗ ✗ ✗ ✓ 64.39 29.88 20.27 8.95 42.32 19.23 28.29
12 ✓ ✗ ✗ ✓ 63.40† 28.90† 18.64† 8.13† 41.79† 17.84† 27.24†

13 ✗ ✓ ✗ ✓ 65.70 28.40† 19.43† 9.06 42.24 18.91† 28.06
14 ✗ ✗ ✓ ✓ 65.09 28.83† 19.58† 8.56† 42.85 18.25† 27.90†

15 ✓ ✓ ✗ ✓ 64.52 28.10† 18.56† 8.01† 41.35† 18.08† 27.21†

16 ✗ ✓ ✓ ✓ 64.49 29.29† 18.15† 8.52† 42.06 18.28† 27.61†

17 ✓ ✗ ✓ ✓ 63.65† 28.11† 18.31† 8.41† 41.99† 17.52† 27.12†

18 ✓ ✓ ✓ ✓ 64.86 28.16† 19.29† 8.23† 42.13 18.08† 27.52†

Table 2: Performance of incorporating severity into DNN mod-
els on UASpeech using the 130.1h or 190h augmented training
set. † denotes a statistically significant improvement (α = 0.05)
over the baseline systems (Sys.3,7,11,13).

Sys. Model KLD #Hrs
Impair. Seve. LHUC

SAT
(Spkr)

WER%
Aux.
Feat.

Trn.
Tar.

LHUC
(Seve.)

Intel. Subgroup
Unseen Seen All

VL L M H
1 Seve.

DNN
✗

130.1
✗ ✗ ✗ ✗

66.61 29.52 22.70 9.90 43.55 20.35 29.45
2 ✓ 66.54 29.38 22.00 9.38 43.22 19.98 29.09
3 DNN / ✗ ✗ ✗ ✗ 66.45 28.95 20.37 9.62 42.46 19.86 28.73
4

DNN / 130.1
✓ ✗ ✗ ✗ 61.55† 27.52† 17.31† 8.22† 40.18† 17.28† 26.26†

5 ✓ ✓ ✗ ✗ 63.83† 28.00† 19.80† 8.68† 40.63† 17.54† 26.60†

6 ✓ ✗ ✓ ✗ 62.24† 27.81† 17.25† 8.15† 40.89† 17.13† 26.45†

7

DNN / 130.1

✗ ✗ ✗ ✓ 62.50 27.26 18.41 8.04 40.01 17.85 26.55
8 ✓ ✗ ✗ ✓ 59.83† 27.16 16.80† 7.91 39.55† 16.60† 25.60†

9 ✓ ✓ ✗ ✓ 61.49† 27.05 17.19† 7.84 40.01 16.92† 25.98†

10 ✓ ✗ ✓ ✓ 61.21† 27.62 17.60† 7.80 40.47 16.88† 26.13†

11

DNN / 190

✗ ✗ ✗ ✗ 67.41 29.17 18.90 7.48 39.50 20.56 27.99
12 ✓ ✗ ✗ ✗ 61.76† 27.11† 15.96† 6.54† 36.85† 17.97† 25.37†

13 ✗ ✗ ✗ ✓ 62.60† 26.65† 15.80† 5.64† 36.98 17.43 25.10†

14 ✓ ✗ ✗ ✓ 62.31 25.15† 13.00† 4.66† 33.43† 17.55 23.78†

From Table 2, the SI system (Sys.3) outperforms the sep-
arately trained severity-dependent systems (Sys.1-2) on the
130.1h augmented training set. The best-performing 130.1h
systems with or without standard LHUC SAT are obtained
by incorporating severity through auxiliary features (Sys.4,8).
Their improvements on the 190h augmented training set are also
consistently observed (Sys. 12 vs. 11, Sys. 14 vs. 13).

Tables 3 and 4 show the performance of incorporating
severity into Conformer and Wav2vec 2.0 systems7. Using
severity in Conformer produces statistically significant WER
reductions up to 4.78% absolute (14.03% relative) (Table 3,
Sys. 3 vs. 2), while on Wav2vec 2.0 producing WER reduction
of 4.37% absolute (16.53% relative) (Table 4, Sys. 3 vs. 2).

4.4. System Combination

The best-performing hybrid DNN, E2E Conformer and fine-
tuned Wav2vec 2.0 systems are further combined using two-
pass rescoring [43], where the DNN system produces N-best

7Using the 30.6h and the 130.1h training set on UASpeech produce
comparable performance when fine-tuning Wav2vec 2.0 models [28].

Table 3: Performance of incorporating severity into E2E Con-
former (CONF.) models on UASpeech. † denotes a significant
improvement (α = 0.05) over the baseline (Sys.2).

Sys. Model #Hrs
Impair. Seve. WER%
Aux.
Feat.

Trn.
Tar.

Intel. Subgroup
Unseen Seen All

VL L M H
1

CONF.

130.1 ✗ ✗ 73.88 53.12 49.92 42.03 99.14 23.51 53.17
2

190

✗ ✗ 65.70 40.63 33.39 9.53 57.40 19.03 34.07
3 ✓ ✗ 65.18† 34.90† 24.21† 5.00† 47.77† 17.20† 29.19†

4 ✗ ✓ 66.95 39.08† 29.78† 8.03† 56.01† 17.72† 32.74†

5 ✓ ✓ 68.03 36.36† 23.29† 4.76† 47.16† 18.79 29.91†

Table 4: Performance of finetuing Wav2vec 2.0 (W2V.) pre-
trained model on UASpeech. † denotes a statistically significant
improvement (α = 0.05) over the baseline (Sys.2).

Sys. Model #Hrs
Seve.
Task

WER%
Intel. Subgroup

Unseen Seen All
VL L M H

1
W2V.

30.6 ✗ 68.25 37.81 24.00 8.13 52.25 18.29 31.61
2

40
✗ 69.04 29.86 14.75 3.68 36.52 19.92 26.44

3 ✓ 59.38† 23.91† 12.10† 2.91† 33.27† 14.85† 22.07†

outputs (N = 50) in the 1st decoding pass while the E2E sys-
tems perform 2nd pass rescoring using score interpolation. The
final system (Table 5 Sys.3) gives an overall WER of 17.82%
(51.25% on very low intelligibility) on the UASpeech test set of
16 dysarthric speakers. To the best of our knowledge, this is the
best performance reported so far on UASpeech.
Table 5: Performance of combining the best DNN (Table 2
Sys.14), E2E Conformer (Table 3 Sys.3) and finetuned Wav2vec
2.0 (Table 4 Sys.3) systems via two-pass rescoring [43].

Sys. Model #Hrs
WER%

Intel. Subgroup
Unseen Seen All

VL L M H
1 DNN → CONF.

190
60.66 22.82 11.37 3.80 31.62 16.15 22.22

2 DNN → W2V. 52.00 18.26 8.35 2.58 26.41 12.92 18.21
3 DNN → CONF. + W2V. 51.25 17.41 8.16 2.66 26.45 12.26 17.82

Table 6: Performance comparison against recently published
systems on UASpeech. “DA” denotes data augmentation.

Sys. VL All

Sheffield-2020 Fine-tuning CNN-TDNN speaker adaptation (15spk) [53] 68.24 30.76
CUHK-2020 DNN + DA + LHUC SAT [9] 62.44 26.37

CUHK-2021 QuartzNet + CTC + Meta-learning + SAT [54] 69.30 30.50
Sheffield-2022 DA + Source Filter Features + iVector adapt [26] - 30.30

BUT-2022 Wav2vec 2.0 + fMLLR + xVectors (15spk) [23] 57.72 22.48
CUHK-2022 DA + TDNN + Wav2vec 2.0 feat. + system combination [28] 52.53 22.83
DA + severity incorporation + system combination (Table 5 Sys.3, ours) 51.25 17.82

5. Conclusions
This paper investigates a novel set of techniques to incor-
porate speech impairment severity into state-of-the-art hybrid
DNN, E2E Conformer and pre-trained Wav2vec 2.0 systems
for dysarthric speech recognition. These techniques include
the use of multitask learning, auxiliary features and structured
LHUC transforms. Experiments conducted on the UASpeech
dataset suggest that incorporating severity and combining the
best-performing systems produces the lowest published WER
of 17.82%. Future research will focus on more advanced tech-
niques of incorporating severity into the E2E systems.
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