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Abstract
Accurate recognition of dysarthric and elderly speech re-

main challenging tasks to date. Speaker-level heterogeneity
attributed to accent or gender, when aggregated with age and
speech impairment, create large diversity among these speak-
ers. Scarcity of speaker-level data limits the practical use of
data-intensive model based speaker adaptation methods. To
this end, this paper proposes two novel forms of data-efficient,
feature-based on-the-fly speaker adaptation methods: variance-
regularized spectral basis embedding (SVR) and spectral fea-
ture driven f-LHUC transforms. Experiments conducted on
UASpeech dysarthric and DementiaBank Pitt elderly speech
corpora suggest the proposed on-the-fly speaker adaptation ap-
proaches consistently outperform baseline iVector adapted hy-
brid DNN/TDNN and E2E Conformer systems by statistically
significant WER reduction of 2.48%-2.85% absolute (7.92%-
8.06% relative), and offline model based LHUC adaptation by
1.82% absolute (5.63% relative) respectively.
Index Terms: Speaker Adaptation, Rapid Adaptation,
Dysarthric Speech, Elderly Speech, Speech Recognition

1. Introduction
Despite the breakthroughs in automatic speech recognition
(ASR) technologies targeting normal speech, accurate recogni-
tion of dysarthric and elderly speech remains highly challenging
tasks to date [1–18]. Speech impairments are commonly found
among dysarthric speakers and the elderly experiencing natu-
ral aging and neurocognitive disorders [19]. ASR technologies
tailored to their needs can improve their quality of life.

Dysarthric and elderly speech presents a prominent chal-
lenge to current ASR technologies primarily targeting normal
speech in many aspects. Heterogeneity commonly found in nor-
mal speech sourcing from accent or gender, when further com-
bined with that over age and speech impairment severity, create
large diversity among dysarthric and elderly speakers [20, 21].
Such diversity is further aggregated when spectral or temporal
perturbation based data augmentation techniques [6,22,23] are
used. To this end, speaker adaptation techniques play a crucial
role in the personalization of ASR systems for such users.

Speaker adaptation techniques for normal speech have been
widely studied in three broad categories: 1) speaker-dependent
(SD) auxiliary speaker embedding features [24–26]; 2) feature
transformations generating canonical features at acoustic front-
ends [27, 28]; 3) model based approaches using specially de-
signed SD DNN parameters [29, 30].

* Part of this work was done while the author was
an intern at Tencent AI Lab. Codes are available at
https://github.com/timspeech/on the fly adapt

In contrast, there are limited prior researches on dysarthric
and elderly speaker adaptation. Earlier works were mainly
conducted on HMM based ASR systems, including MLLR
and MAP adaptation [1, 31–33] and their combination with
speaker adaptive training (SAT) [2], feature-space MLLR (f-
MLLR) based SAT [34] and regularized speaker adaptation via
Kullback-Leibler (KL) divergence [35]. More recent researches
applied model based adaptation to current DNN based ASR sys-
tems, including direct parameter fine-tuning based adaptation
in both hybrid TDNN [4, 36] and end-to-end RNN-T [37, 38]
systems, LHUC [8, 11] and Bayesian speaker adaptation [39].
Spectro-temporal basis embedding features (SBE) based offline
adaptation via speaker-level averaging was studied in [10, 16].

One major issue associated with the prior researches above
is the lack of suitable rapid, on-the-fly adaptation techniques
targeting dysarthric and elderly speech. Such methods serve as
dual-purpose solutions to handle not only the difficulty in col-
lecting large quantities of data from such speakers with mobil-
ity issues that are essential for model based adaptation but also
their latency issues due to multi-pass decoding and SD param-
eter estimation. The Bayesian model based adaptation using
very limited speaker data [11, 39, 40] only addressed the afore-
mentioned data scarcity issue, but the latency problem remains
unvisited. Similarly, the spectro-temporal deep embedding fea-
tures [10] computed and averaged over all speaker-level data
incurred latency and precluded the use of on-the-fly adaptation.

In order to address this issue, two novel forms of feature-
based on-the-fly rapid speaker adaptation approaches are pro-
posed in this paper. The first is based on speaker-level variance-
regularized spectral basis embedding (SVR) features. An ad-
ditional variance regularization term is included when training
spectral basis embedding DNNs [10,16] to ensure speaker-level
homogeneity of the resulting embedding features and thus al-
low them to be applied on the fly during test time adaptation.
The second approach uses on-the-fly feature-based LHUC (f-
LHUC) transforms conditioned on spectral features. Specially
designed regression TDNN [41] predicting speaker-level LHUC
transforms are used to directly generate and apply such pa-
rameters during test time adaptation and thus resolve the la-
tency due to multi-pass decoding. Experiments were conducted
on the largest available and most widely used UASpeech [42]
dysarthric and DementiaBank Pitt [43] elderly speech datasets.
Consistent performance improvements were obtained by our
proposed on-the-fly speaker adaptation approaches using both
hybrid DNN/TDNN and E2E Conformer [44] systems.

The main contributions of the paper are summarized below:
1) This paper presents the first work of on-the-fly feature-

based fast speaker adaptation targeting dysarthric and elderly
speech. In contrast, previous works on feature-based dysarthric
and elderly speaker adaptation utilize all speaker-level data and
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operate in batch mode [10, 16] while those using model based
adaptation not only require the usage of all speaker-level data,
but also additional multiple decoding passes and explicit pa-
rameter estimation in test time [6, 8, 11, 39]. These prior works
incur significant latency and are not the on-the-fly, rapid speaker
adaptation approaches considered in this paper.

2) Our proposed SVR features can instantaneously extract
homogeneous dysarthric and elderly speaker characteristics on
the fly. Experiments conducted on benchmark UASpeech
dysarthric and DementiaBank Pitt elderly speech datasets sug-
gest the proposed on-the-fly speaker adaptation approaches
consistently outperform the baseline iVector adapted hybrid
DNN/TDNN and E2E Conformer systems by statistically sig-
nificant word error rate (WER) reduction of 2.48%-2.85% ab-
solute (7.92%-8.06% relative), and offline model based LHUC
adaptation by 1.82% absolute (5.63% relative) respectively.

2. Variance-Regularized Spectral Features
To model the latent diversity in dysarthric and elderly speech,
singular value decomposition (SVD) is performed on Mel-
filterbank log amplitude spectrum S [45], given as:

S = UΣVT (1)

where the top-d principal spectral bases are retrieved from
the column vectors of U. Following [10,16], further supervised
learning is performed via constructing DNN speech intelligibil-
ity or age classifier (the upper part of Fig.1). The inputs are the
selected spectral bases, and the targets are speech intelligibility
groups + speaker IDs for the UASpeech corpus and binary aged
vs. non-aged annotations for the DementiaBank Pitt corpus.

To ensure speaker-level homogeneity of the embedding fea-
tures, a pair of such DNN classifiers (Fig.1) are constructed.
The 25-dim embedding features taken from the bottleneck of
the upper classifier are averaged by speaker and serve as the
regression targets of the lower DNN classifier (Fig.1 blue bold
line) for variance regularization. A multitask learning (MTL)
cost function is used to train the lower classifier, using interpo-
lation between 1) the cross-entropy (CE) error computed over
speech intelligibility or age labels, optionally plus that over
speaker IDs and 2) the mean squared error (MSE) computed be-
tween the lower DNN bottleneck features and the corresponding
embedding produced by the upper DNN, which is given as:

LMTL = ω1·LMSE + ω2·LCEgroup + ω3·LCEID
1 (2)
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Figure 1: Our proposed DNN speech intelligibility or age clas-
sifier with a bottleneck layer to extract variance-regularized
spectral basis embedding (SVR) features for speaker adapta-
tion. Here “intel.” denotes speech intelligibility.

The 25-dim variance-regularized spectral basis embedding
(SVR) features are then taken from the bottleneck layer of the

1Empirically set for the UASpeech corpus as ω1 = ω2 = ω3 = 1
3

,
while for the DementiaBank Pitt corpus ω1 = ω2 = 1

2
, ω3 = 0.

lower classifier (Fig.1 red bold line), and appended to the acous-
tic features at the front-end of hybrid DNN/TDNN (Fig.4) and
E2E Conformer systems (Fig.5), to facilitate on-the-fly test time
adaptation. The aforementioned procedure is summarized in
Fig. 2. Directly using the top d spectral bases or intermediate
embedding features are unsuitable for speaker adaptation [16].
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Figure 2: Procedure of generating the SVR features. “deep em-
bed.” refer to the DNN embedding process shown in Figure 1.

3. On-the-Fly F-LHUC Transforms
In feature-based learning hidden unit contributions (f-LHUC)
based adaptation approaches [41], LHUC transforms are pre-
dicted from the acoustic features on the fly. Supervised estima-
tion of LHUC transforms on the training data is first conducted
via standard speaker adaptive training (SAT). Principal compo-
nent analysis (PCA) is further applied to produce compressed
LHUC vectors encoding the most distinctive speaker-level fea-
tures. These serve as the output targets for the TDNN based
LHUC regression network (Fig.3), with a specially designed
online averaging layer [41] given as:

mi
s =

∑∑∑Ti
t=1 h

i
t +α·Gi−1

s

Ti + α·N i−1
s

(3)
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Figure 3: TDNN based LHUC regression network.

where Gs, Ns and ms denote the accumulated hidden vec-
tor, frame count, and averaged hidden vector till the ith segment
of speaker s. The ith utterance contains Ti frames, and the hid-
den vector of the tth frame is hi

t. α ∈ [0, 1] is the history
interpolation weight. Different from [41], FBK + SVR fea-
tures are used to train the LHUC regression network (Fig 3).
An additional affine transformation is further trained to map the
predicted low-dimensional LHUC features for training speakers
to corresponding LHUC transforms. During test time on-the-fly
adaptation, the regression network (Fig. 3) and the affine trans-
formation (Fig.4 circled in green) are applied in turn to generate
speaker-level LHUC transforms using FBK + SVR features.

(i)

(ii)

monophone

tied triphone state

Hybrid DNN ASR System

acoustic
features

adaptation
features
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Figure 4: Incorporation of variance-regularized spectral basis
embedding (SVR) features at front-end of hybrid DNN ASR sys-
tems [11]. Selecting path (i) leads to systems with auxiliary fea-
ture based adaptation only, while selecting (ii) leads to systems
with additional feature-based LHUC (f-LHUC) adaptation.
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Figure 5: Incorporating SVR features into E2E Conformer.

4. Experiments and Results
4.1. Experiments on the UASpeech Dataset

Task Description: UASpeech is the largest publicly available
and widely used dysarthric speech dataset [42], which is an iso-
lated word recognition task containing 103h speech from 16
dysarthric and 13 control speakers. It is split into blocks B1, B2
and B3, each with the same 155 common words and different
100 uncommon words. The training set includes B1 and B3 data
of all 29 speakers (69.1h), while the test set includes B2 data of
16 dysarthric speakers (22.6h, excluding speech from control
speakers). Silence stripping using an HTK trained GMM-HMM
system [11] produces a 30.6h training set (99195 utt.) and a 9h
test set (26520 utt.). Data augmentation [6] produces a 130.1h
augmented training set (399110 utt.). The average utterance
length is 1.2 seconds. As E2E systems are sensitive to the train-
ing data coverage, B2 data of the 13 control speakers and their
speed perturbed versions are also used for Conformer system
training. This creates a 190h training set (538292 utt.).
Experiment Setup: The 7-layer hybrid DNN and E2E
graphemic Conformer systems were implemented using Kaldi
following [11] and ESPnet2. The inputs were 80-dim filter-
bank (FBK) + ∆ features plus 25-dim variance-regularized
spectral basis embedding (SVR) features or 100-dim iVectors3

(Fig. 4-5). Top 2 spectral bases [10, 16] were used to train the
DNN intelligibility classifier (Fig.1). The history interpolation
weight α for LHUC regression was set to 0.9 with the context
slicing indices as {−2,−1, 0, 1, 2},{−2, 0, 2},{−3, 0, 3} and
{−4, 0, 4}. A uniform language model (LM) was used in de-
coding [1]. As an ablation study, we used iVectors as the in-
puts to the DNN classifier (Fig.1) for variance regularization
and generate variance-regularized iVectors (iVRs).
Result Analysis: Table 1 shows the performance comparison4

between the proposed SVR feature adaptation, spectral fea-
ture driven f-LHUC adaptation, iVector adaptation and offline
LHUC adaptation on the UASpeech corpus. Several trends can
be observed: 1) On-the-fly SVR adaptation (Sys.5,15,26) con-
sistently and statistically significantly outperform iVector adap-
tation (Sys.2,12,23) with various amounts of training data by
up to 2.48% absolute (7.92% relative) overall WER reduc-
tion for hybrid DNN (Sys.5 vs. Sys.2), and 2.85% absolute
(8.06% relative) reduction (Sys.26 vs. Sys.23) for Conformer
systems, respectively. 2) The improvements from offline LHUC
adaptation (Sys.6,16) over the SI systems (Sys.1,11) are largely
retained (by 82%) and comparable to those obtained using
on-the-fly SVR adaptation (Sys.5,15). 3) Compared with im-
provements over SI systems (Sys.1,11) obtained by offline SBE
adaptation [10] that requires expensive speaker-level averag-
ing (Sys.3,13), on-the-fly SVR adaptation (Sys.5,15) produces
comparable performance. 4) The spectral feature (FBK+SVR)
driven f-LHUC adapted systems (Sys.10,20) outperform both
the FBK or FBK+iVector driven f-LHUC adapted systems

212 encoder layers + 12 decoder layers, feed-forward dim = 2048,
4 attention heads of 256 dimensions, interpolated CTC+AED cost.

3Kaldi: egs/wsj/s5/local/nnet3/run ivector common.sh. Changing
the dimensionality of iVectors produces margin effect [16].

4A matched pairs sentence-segment word error (MAPSSWE) based
statistical significance test [46] was done at significance level α = 0.05.

Table 1: Performance of the proposed variance-regularized
spectral basis embedding (SVR) feature adaptation, iVector
adaptation and LHUC adaptation on the UASpeech test set of
16 dysarthric speakers. “SBE” denotes spectral basis embed-
ding features. “VL/L/M/H” refer to intelligibility very low, low,
mid and high. “On Fly” indicates using on-the-fly adaptation.
† denotes a statistically significant improvement (α = 0.05)
obtained over iVector adapted systems (Sys.2,12,23).

Sys.
Model

(#Para.)
Data
Aug.

#Hrs
Adapt.
Feat.

LHUC
SAT

f-LHUC
On
Fly

WER%
VL L M H All

1

Hybrid
DNN
(6M)

✗ 30.6

✗

✗ ✗

- 69.82 32.61 24.53 10.40 31.45
2 iVector ✓ 69.46 33.78 22.58 10.45 31.33
3 SBE [10] ✗ 64.43 29.71 19.84 8.57 28.05
4 iVR ✓ 68.66 33.72 22.84 9.83 30.99
5 SVR ✓ 65.04† 30.90† 20.70† 10.15† 28.85†

6 ✗
✓ ✗

✗ 64.39 29.88 20.27 8.95 28.29
7 SBE [10] ✗ 63.40 28.90 18.64 8.13 27.24
8 ✗

✗

(FBK) ✓ 66.47† 29.55† 21.00† 8.99† 28.80†

9 iVector (+iVector) ✓ 64.86 36.44 21.17 9.03 30.29
10 SVR (+SVR) ✓ 65.75† 29.80† 19.07† 8.99† 28.31†

5+10 - ✓ 64.36† 29.68† 18.96† 8.89† 27.96†

11

Hybrid
DNN
(6M)

✓ 130.1

✗

✗ ✗

- 66.45 28.95 20.37 9.62 28.73
12 iVector ✓ 65.73 30.10 20.21 9.03 28.65
13 SBE [10] ✗ 61.55 27.52 17.31 8.22 26.26
14 iVR ✓ 66.02 29.52 19.56 9.32 28.53
15 SVR ✓ 62.54† 30.22 18.54† 8.59† 27.54†

16 ✗
✓ ✗

✗ 62.50 27.26 18.41 8.04 26.55
17 SBE [10] ✗ 59.83 27.16 16.80 7.91 25.60
18 ✗

✗

(FBK) ✓ 65.06 27.94† 18.76† 8.39† 27.45†

19 iVector (+iVector) ✓ 63.63 32.56 18.52 8.31 28.28
20 SVR (+SVR) ✓ 61.56† 28.81 18.39† 8.50† 26.90†

15+20 - ✓ 60.80† 28.19† 17.72† 8.23† 26.36†

21

Conformer
(52M)

✓

130.1 ✗

✗ ✗

- 73.88 53.12 49.92 42.03 53.17
22

190

✗ - 65.70 40.63 33.39 9.53 34.07
23 iVector ✓ 69.05 42.45 33.60 9.74 35.37
24 SBE [10] ✗ 65.18 34.90 24.21 5.00 29.19
25 iVR ✓ 68.94 42.00 32.19 8.52 34.55
26 SVR ✓ 67.52† 38.85† 28.60† 7.88† 32.52†

(Sys.8,9,18,19) and the SVR adaptation alone (Sys.5,15). 5)
Frame-level log-likelihood score combination between on-the-
fly SVR adaptation and FBK+SVR driven f-LHUC adaptation
leads to further improvements (Sys.5+10, Sys.15+20). 6) The
SVR on-the-fly adapted systems (Sys.5,15,26) consistently out-
perform comparable variance-regularized iVector (iVR) adap-
tation (Sys.4,14,25). 7) A comparison between published sys-
tems on UASpeech and ours is shown in Table 4. Our best-
performing system (Table 1, Sys.15+20) produces the lowest
WERs among all systems using online speaker adaptation.

4.2. Experiments on the DementiaBank Pitt Dataset

Task Description: The DementiaBank Pitt [43] dataset con-
tains 33h speech recorded over interviews between 292 elderly
participants and clinical investigators. After split of the data
and silence stripping [8], the training set contains 15.7h speech
from 244 elderly and 444 investigators (29682 utt.) while the
development and evaluation sets contain 2.5h (5103 utt.) and
0.6h (928 utt.) speech from 43 elderly and 76 investigators5.
Data augmentation [8] produced an 58.9h augmented training
set (112830 utt.). The average utterance length is 1.9 seconds.
Experiment Setup: The inputs to the hybrid TDNN systems6

and E2E graphemic Conformer systems7 were 40-dim FBK
+ 25-dim SVR features or 100-dim iVectors. Top 3 spectral
bases [16] served as the inputs to the DNN age classifier (Fig.1).
A word 4-gram LM [8] and a 3.8k recognition vocabulary cov-
ering all words in DementiaBank Pitt corpus was used.

5The evaluation set is based on exactly the same 48 speakers’
Cookie task recordings following [47] while the development set con-
tains the recordings of these speakers in other tasks if available.

614 context slicing layers with a 3-frame context.
712 encoder layers + 12 decoder layers, feed-forward dim = 2048,

4 attention heads of 256 dimensions, interpolated CTC+AED cost.

1755



Table 2: Performance of the proposed variance-regularized
spectral basis embedding (SVR) feature adaptation, iVector
adaptation and LHUC adaptation on augmented Dementia-
Bank Pitt corpus. “INV” and “PAR” denote investigator and
elderly. † denotes a statistically significant improvement (α =
0.05) over both the iVector adaptation (Sys.2) and offline LHUC
adaptation (Sys.6), while ‡ denotes a statistically significant im-
provement (α = 0.05) over the iVector adaptation (Sys.12).

Sys.
Model

(#Para.)
#Hrs

Adapt.
Feat.

LHUC
SAT

f-LHUC
On
Fly

WER%
Dev Eval

All
INV PAR INV PAR

1

Hybrid
TDNN
(18M)

58.9

✗

✗ ✗

- 19.91 47.93 19.76 36.66 33.80
2 iVector ✓ 19.97 46.76 18.20 37.01 33.37
3 SBE [16] ✗ 18.61 43.84 17.98 33.82 31.12
4 iVR ✓ 19.19 47.64 18.65 35.80 33.26
5 SVR ✓ 18.72† 44.67† 18.65 34.03† 31.55†

6 ✗
✓ ✗

✗ 19.26 45.49 18.42 35.44 32.33
7 SBE [16] ✗ 17.41 40.94 17.98 31.89 29.16
8 ✗

✗

(FBK) ✓ 19.61 45.40 18.87 34.77 32.33
9 iVector (+iVector) ✓ 18.75 47.07 17.98 36.11 32.85

10 SVR (+SVR) ✓ 17.87† 43.83† 16.87† 34.56† 30.91†

5+10 - ✓ 17.66† 43.48† 16.09† 33.68† 30.51†

11

Conformer
(52M)

58.9

✗

✗ ✗

- 20.97 48.71 19.42 36.93 34.57
12 iVector ✓ 21.48 48.32 17.42 37.79 34.71
13 SBE [16] ✗ 20.44 47.70 17.31 36.11 33.76
14 iVR ✓ 22.09 49.56 19.64 38.58 35.65
15 SVR ✓ 20.83 47.39‡ 17.64 36.34‡ 33.84‡

Result Analysis: Table 2 shows the performance of the pro-
posed on-the-fly SVR adaptation, f-LHUC adaptation, iVec-
tor adaptation and LHUC adaptation on DementiaBank Pitt.
Trends similar to those on UASpeech in Table 1 are observed: 1)
On-the-fly SVR adaptation (Sys.5,15) statistically significantly
outperform iVector adaptation (Sys.2,12) on both TDNN and
Conformer systems by up to 1.82% absolute (5.45% relative)
WER reduction (Sys.5 vs. Sys.2). 2) On-the-fly SVR adapta-
tion outperforms offline LHUC adaptation by 0.78% absolute
(2.41% relative) overall WER reduction (Sys.5 vs. Sys.6). 3)
On-the-fly SVR adaptation (Sys.5) largely retains (by 84%) the
improvements obtained by offline SBE adaptation [16] (Sys.3)
over the SI system (Sys.1). 4) The proposed FBK+SVR driven
f-LHUC adapted system (Sys.10) outperforms offline LHUC
adaptation (Sys.6) while also outperforming FBK driven f-
LHUC adaptation (Sys.8) and SVR adaptation alone (Sys.5). 5)
Frame-level score combination between SVR and FBK+SVR
driven f-LHUC on-the-fly adaptation leads to 1.82% absolute
(5.63% relative) WER reduction over the offline LHUC adap-
tation (Sys.5+10 vs. Sys.6). 6) Our proposed on-the-fly SVR
(Sys.5,15) and FBK+SVR driven f-LHUC adaptation (Sys.10)
consistently outperform the comparable iVR (Sys.4,14) and
FBK+iVector driven f-LHUC adaptation (Sys.9).

4.3. Further Ablation Studies

31

32

33

34

35

36

37

0 1 5 10 20 40 80 100

W
ER

(%
)

LHUC SAT
SBE
SVR

25

30

35

40

45

50

55

0 1 5 10 20 40 80 100

W
ER

(%
)

LHUC SAT
SBE
SVR

1utt.1utt. 1utt.
(a) UASpeech (b) DementiaBank Pitt

The percentage (%) of adaptation utterance per speaker

Figure 6: Performance (WER%) of offline LHUC [11], offline
SBE adaptation [10,16] and on-the-fly SVR adaptation of Sec.2
on varying percentage of test set speaker-level adaptation data
on UASpeech and DementiaBank Pitt.

As expected, the ablation study in Fig. 6 confirms on-the-fly
SVR adaptation is more robust to varying amounts of speaker-
level data used in adaptation than offline LHUC and SBE adap-
tation, and consistently outperforms both when less than 40%
of speaker-level data is used. A further ablation study in Ta-
ble 3 suggests the performance of on-the-fly SVR adaptation
is largely insensitive to the length of analysis sliding windows
(from 1 utt. down to 10ms). Homogeneous dysarthric and el-
derly speaker characteristics can be instantaneously extracted in
the SVR features on the fly. The real-time (R.T.) factor indicates
the total delay of waiting for data and model processing.

Table 3: Ablation study on the augmented UASpeech (UA.) and
DementiaBank Pitt (DBK.) corpora with various sizes of slid-
ing window (Slid. Wind.) for on-the-fly SVR feature extraction.
“R.T.” is short for real time. † denotes a statistically signifi-
cant improvement (α = 0.05) is obtained over the comparable
on-the-fly iVector adapted systems.

UA.
Sys.

Model
(#Para.)

#Hrs
Adapt.
Feat.

Slid.
Wind.

On
Fly

R.T.
Factor

WER%
VL L M H All

1

Hybrid
DNN
(6M)

130.1

iVector 100ms

✓

0.10 65.73 30.10 20.21 9.03 28.65
2

SVR

utt. 1.02 62.54† 30.22 18.54† 8.59† 27.54†

3 300ms 0.27 63.74† 29.01† 19.56† 9.09 27.84†

4 200ms 0.18 63.81† 29.15† 20.19 9.31 28.08†

5 100ms 0.10 64.49† 28.36† 19.47† 9.27 27.87†

6 50ms 0.06 63.99† 28.68† 19.17† 8.99 27.70†

7 10ms 0.03 64.77† 29.03† 19.21† 9.09 28.00†

DBK.
Sys.

Model
(#Para.)

#Hrs
Adapt.
Feat.

Slid.
Wind.

On
Fly

R.T.
Factor

WER%
Dev Eval

All
INV PAR INV PAR

1

Hybrid
TDNN
(18M)

58.9

iVector 100ms

✓

0.08 19.97 46.76 18.20 37.01 33.37
2

SVR

utt. 1.03 18.72† 44.67† 18.65 34.03† 31.55†

3 300ms 0.19 19.29† 45.01† 19.09 33.28† 31.81†

4 200ms 0.14 19.36 45.15† 19.20 33.89† 32.01†

5 100ms 0.08 19.08† 45.03† 19.42 34.41† 31.93†

6 50ms 0.06 19.38 44.87† 18.31 34.52† 31.97†

7 10ms 0.04 19.33† 44.93† 19.09 34.35† 31.97†

Table 4: Performance comparison against recently published
systems on UASpeech. “DA” denotes data augmentation.

Sys. Online VL All

Sheffield-2015 Speaker adaptive training [2] ✗ 70.78 34.85
Sheffield-2020 Fine-tuning CNN-TDNN speaker adaptation (15spk) [4] ✓ 68.24 30.76

CUHK-2020 DNN + DA + LHUC SAT [6] ✗ 62.44 26.37
CUHK-2021 LAS + CTC + Meta-learning + SAT [48] ✗ 68.70 35.00

CUHK-2021 QuartzNet + CTC + Meta-learning + SAT [48] ✗ 69.30 30.50
Sheffield-2022 DA + Source Filter Features + iVector adapt [17] ✓ - 30.30

DA + SVR Adapt + f-LHUC system combination (Table 1, Sys.15+20) ✓ 60.80 26.36

5. Conclusions
This paper proposes two novel forms of feature-based on-
the-fly speaker adaptation approaches: speaker-level variance-
regularized spectral basis embedding (SVR) features adaptation
and spectral feature driven f-LHUC adaptation. Experiments
conducted on benchmark UASpeech dysarthric and Dementia-
Bank Pitt Elderly datasets suggest both methods can efficiently
encode homogeneous dysarthric and elderly speaker specific
characteristics and outperform both online iVector and offline
model based LHUC adaptation. Future research will focus on
rapid speaker adaptation of pre-trained ASR systems.
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