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Abstract
Following speech in noisy and reverberant situations is difficult
for cochlear implant (CI) users. This study investigates single-
and multi-microphone deep neural network (DNN) speech en-
hancement algorithms on the joint task of denoising and dere-
verberation. The DNN algorithms were trained and tested on
simulated sound scenes from behind-the-ear hearing devices.
Performance was assessed using objective measures and a lis-
tening study for reverberant mixtures of speech in multi-talker
babble noise. We compare results for signal distortion, pre-
dicted intelligibility and speech reception thresholds measured
in a listening experiment with 15 typically hearing participants
using cochlear implant simulations. Objective metrics indicated
listening benefits for both single- and multi-microphone ap-
proaches while the listening study results confirmed significant
improvements in speech intelligibility for the multi-microphone
approaches, holding strong promise to benefit CI listeners.
Index Terms: speech enhancement, dereverberation, cochlear
implants, multichannel, speech intelligibility

1. Introduction
Whether using single- or multiple-microphone approaches,
deep learning-based speech enhancement algorithms have been
actively investigated in recent years. On the one hand, end-to-
end learning and advances in time-frequency masking by deep-
neural network architectures allowed for improved performance
of single-microphone time-domain approaches on speech en-
hancement or separation tasks [1]. On the other hand, so called
neural beamformers have been developed to tackle the problem
of multi-microphone speech enhancement or separation by cap-
italising on spatial information. Many recent studies featuring
such algorithms were evaluated on increasingly realistic sound
scenes including reverberation. The algorithms were trained to
predict the echoic speech targets, which can yield improvements
in speech intelligibility due to noise removal only. However,
interactions between noise and reverberation are likely to nega-
tively affect speech perception, especially for people with hear-
ing difficulties and those listening with cochlear implants [2, 3].
This limitation is calling for more advanced approaches able to
not only account for noise but also for reverberation artefacts.
In this study we investigated the performance of different algo-
rithms based on the Dual-Path Recurrent Neural Network (DP-
RNN) [4] architecture on the joint task of denoising and dere-
verberation (i.e. predicting the anechoic speech target) and eval-
uated their application to cochlear implants via objective met-
rics and a listening study using cochlear implant simulations.
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Cochlear implants (CI) are sensory prostheses that restore a
sense of hearing to people with severe to profound sensorineural
hearing loss [5]. CIs use a surgically-implanted electrode array
in the cochlea to bypass the acoustic path in the auditory sys-
tem with direct electrical stimulation of the spiral ganglion cells.
While most CI recipients achieve good speech understanding in
quiet conditions, background noise and reverberation negatively
affect their speech perception. Previous work reported signifi-
cant improvements in speech intelligibility for CI recipients in
noisy situations with deep neural network algorithms [6, 7, 8]
and for typically hearing listeners using CI simulations [9, 10].
However, these previous studies only used single-microphone
approaches and considered background noise without reverber-
ation. Traditional multi-microphone approaches, or beamform-
ers, provided improvements in conditions where speech and
background noise were spatially separated [11, 12], but so far
no DNN-based approaches have been developed nor tested for
CIs. Other studies solely focused on the detrimental effects of
reverberation on CI speech perception and its mitigation [13]
while ignoring the interactions with background noise. It is im-
portant to establish whether more realistic situations containing
both background noise and reverberation can be mitigated by
advanced speech enhancement algorithms with one or more mi-
crophones for cochlear implant listeners.

This paper is organised into the following sections: Sec-
tion 2 describes the different speech enhancement approaches
investigated in this study as well as the experimental evalua-
tion. A systematic comparison between the single- and multi-
microphone algorithms is performed and results are detailed in
section 3 for signal-based objective metrics and speech intelli-
gibility scores measured in a listening study with typically hear-
ing volunteers using cochlear implant simulations. Finally, we
discuss the results and limitations in section 4.

2. Single- and multi-microphone speech
enhancement

In this section we briefly recap the signal model and the two
speech enhancement approaches to be compared before describ-
ing the parameters used in the experimental validation.

2.1. Noisy reverberant signal model

We consider the following discrete signal model:

yi = xi ⋆ hi + ni (1)

with yi ∈ RL a reverberant noisy mixture sensed from the ith

microphone of a sound recording system. xi ∈ RM denotes
the direct path signal of a speech source of interest at the ith

microphone. In our model we consider the case of a body-
worn recording system (hearing devices for instance) where the
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direct-path signal x (anechoic target) encompasses head-torso-
pinna reflections. hi ∈ RN represents the acoustic path also
called Room Impulse Response in case of indoor sound propa-
gation between the speech source and the ith microphone. The
latter encompasses the effect of the room (reverberation) on the
propagation. Finally, ni ∈ RL is the noise recorded on the ith

microphone. ⋆ denotes the convolution operation.

2.2. Model architectures

A single-microphone algorithm based on the Dual-Path Recur-
rent Neural Network (DP-RNN) [4] was compared against an
algorithm using multiple microphone inputs based on the DP-
RNN and Filter-and-Sum (FaSNet) architectures [14]. These
methods are described in the following.

2.2.1. Single-microphone setup: Encoder-Masker-Decoder

Recent advances in single-microphone speech enhancement and
speech separation research promoted end-to-end deep-learning
approaches over more traditional time-frequency methods uti-
lizing filterbanks based on the short-time frequency trans-
form (STFT). Results suggested that substantial improvements
in speech separation could be achieved by replacing STFTs
with convolutional encoder-decoder layers [1]. Retaining an
Encoder-Masker-Decoder architecture allows to perform end-
to-end speech separation or enhancement directly on the time-
domain speech signal. This is the case for the DP-RNN Time
domain Audio Separation framework (DP-RNN TasNet)[4]
used in this work. The DP-RNN TasNet is formed of three
main blocks: a 1-D convolutional encoder that forms a 2-D
representation of the single-microphone input mixture, a mask-
ing network (DP-RNN) formed of two RNNs to process local
and global information and a 1-D transposed convolutional de-
coder to transform the masked speech representation back to the
time domain. The masking network estimates the correspond-
ing mask values to be applied to the encoder output for each
time frame of the input speech mixture to obtain the speech
source signal. The DP-RNN is trained end-to-end, such that all
three blocks are optimised jointly to estimate the anechoic target
speech contrary to previous work that estimated the reverberant
target speech. We used the model parameters as described in
[4] but switched to unidirectional mode for the RNN that pro-
cesses global information as well as channel-wise normalization
to more closely align with causal processing required for real-
time processing in hearing devices such as cochlear implants.
This normalisation method only requires inputs at the current
time-step and no look-ahead for future information.

2.2.2. Multi-microphone setup: Neural Beamformer

Deep-learning based spatial filtering approaches raised inter-
est in recent years and were successfully applied to automatic
speech recognition [15]. Neural beamformers make use of
multi-microphone inputs to derive a mapping between input
mixtures and a source signal of interest. We used the method
presented in [16] based on the Filter-and-Sum Network (FaS-
Net) [14]. This method also relies on DP-RNN blocks but ad-
ditionally learns time-domain beamforming filters using infor-
mation across multiple microphones. Firstly, a latent represen-
tation of the input mixtures is formed. This representation is
established by concatenating a learned encoder output as in DP-
RNN TasNet with normalized cross-correlation (NCC) features
between microphones. The next stage of the FaSNet consists of
DP-RNN blocks which map the latent representation to beam-
forming filters (instead of mask values) that are then applied

to the input mixture to obtain the corresponding speech source
signal. The model was parameterised as in [16] but adjusted to
unidirectional processing for the global RNN and channel-wise
normalization. As the original FaSNet algorithm works in a
frame-based fashion and requires a symmetrical contextual win-
dow with past and future samples centered around the current
frame, we further decreased the frame size and contextual win-
dow to 1ms and 6ms, respectively, in order to reduce the latency
required to estimate the beamforming filter. Therefore, the ad-
justed FaSNet only requires 4ms of future information for the
processing in line with requirements for hearing devices. Simi-
lar to the single-microphone DP-RNN, the FaSNet was trained
end-to-end to estimate the anechoic target speech.

2.3. Experimental setup

Figure 1: Schematic showing the location of the behind-the-ear
multi-microphone hearing devices with microphones 1-6.

2.3.1. Sound scenes and datasets

Training data consisted of 6000 simulated sound scenes (4s
each) from behind-the-ear hearing devices. A diagram repre-
senting a listener equipped with such a system is represented
in Figure 1 with microphones, shown as small circles and num-
bered from 1 to 6. We used speech and impulse response record-
ings from the first Clarity Enhancement Challenge (CEC1)
training dataset [17], [18] as well as noise recordings from the
WSJ0 Hipster Ambient Mixtures (WHAM!) training dataset
[19]. Reverberated noisy speech mixtures were generated at
signal-to-noise ratios (SNRs) sampled uniformly from −20dB
to +20dB. We convolved the noise recordings with the averaged
diffuse parts of three randomly chosen room impulse responses
similarly to [20] to model a diffuse noise. Evaluation data con-
sisted of 270 simulated sound scenes using unseen test data that
was different from the training data in the relevant aspects to
robustly assess model performance. We used Bamford-Kowal-
Bench (BKB) sentences [21] (English, spoken by a male talker
as in [7]) as target speech, room impulse responses from the
CEC1 test dataset and random excerpts from a multi-talker bab-
ble recording (16-talkers babble, Auditec®, St Louis, MO) to
generate the reverberated noisy speech mixtures at SNRs from
-20 dB to +20 dB.

2.3.2. Model training and configuration

Contrary to previous speech enhancement or speech separation
studies, which used the reverberated clean speech as target, here
the target signal for the algorithm training was the anechoic
clean speech. The algorithms were trained to predict the di-
rect path target speech x1 from the front left microphone of the
sensing system (microphone 1 in Figure 1). This represents a
joint task for the algorithm to compensate for the effects of both
noise and reverberation at the same time. We trained the mod-
els for 100 epochs using the Adam optimizer, with a learning
rate of 10−3 and a batch size of 2. All algorithms were trained
to maximize the scale-invariant Signal-to-Distortion Ratio (SI-
SDR) [22] using gradient clipping with a maximum l2 norm of
5. We selected the models with the best validation loss for the
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Table 1: Quantitative results for signal-based measures in 3 SNR conditions.

Unprocessed Single microphone 2 microphones 6 microphones Ideal Ratio Mask

SNR (dB) -4 0 10 -4 0 10 -4 0 10 -4 0 10 -4 0 10

SI-SDR (dB) −5.29 −2.63 4.62 −7.28 0.49 8.28 6.18 8.00 10.06 9.13 10.80 12.69 10.65 11.90 13.58
eSTOI 0.45 0.55 0.77 0.44 0.58 0.82 0.66 0.76 0.88 0.77 0.84 0.92 0.88 0.91 0.94
NCM 0.29 0.49 0.80 0.21 0.51 0.84 0.76 0.83 0.91 0.85 0.91 0.96 0.94 0.97 0.98

Figure 2: Comparison of signal-based metrics across SNR for all conditions.

testing.1 We trained three different models with access to one
or more microphones. The first model was adapted from [4]
with access to a single microphone (front-left, microphone 1
in Figure 1). The second model was adapted from [16] with
access to 2 unilateral microphones (front-left and rear-left, mi-
crophones 1 and 3 in Figure 1). The third model was trained
with access to all 6 bilateral microphones (1 to 6 on Figure 1).
The first two models thus relied on unilateral information with-
out or with spatial information while the third model used bi-
lateral and spatial information. We implemented the models by
adapting the baseline implementations of [4] and [16] from the
Asteroid toolbox [23].

2.4. Cochlear implant simulation
Noise or tone vocoders are commonly used to simulate speech
as obtained after CI processing [9, 7, 10]. In order to simulate
speech perception with CIs, all tested signals used for compari-
son in section 3 were processed with the SPIRAL vocoder [24]
which was developed and validated to encompass the effects
of limited spectro-temporal resolution and increased spread of
excitation with CIs [25]. SPIRAL was parameterized with 16
analysis filter bands to represent the 16 electrode channels as
used in CIs manufactured by Advanced Bionics® (AB, Valen-
cia, CA) and a current decay slope of -16 dB/octave to simu-
late the effects of spread of excitation observed typically with
CIs [26]. In previous research, the SPIRAL vocoder and similar
approaches have successfully been used to simulate CI speech
perception in typically hearing listeners and produced speech
performance well aligned with findings for CI listeners [7].

3. Performance comparison
We assessed performance of the three models on objective
signal-based metrics and measured speech intelligibility scores
in a listening study. We compared the three different speech en-
hancement approaches, as described in subsection 2.3.2 (Single
microphone, 2 microphones and 6 microphones), against two
control conditions: the noisy reverberant input speech mixture

1This work was performed using resources provided by the Cambridge Ser-
vice for Data Driven Discovery (CSD3) operated by the University of Cambridge
Research Computing Service, using Tier-2 funding from the Engineering and
Physical Sciences Research Council (capital grant EP/T022159/1), and DiRAC
funding from the Science and Technology Facilities Council.

(Unprocessed condition) and the speech obtained by applying
an STFT-based Ideal-Ratio-Mask (IRM) [27] on the front-left
microphone signal (y1) with the anechoic target STFT magni-
tudes as reference.

3.1. Signal-based metrics results
Performance was assessed with two speech intelligibility pre-
diction metrics: the extended Short Time Objective Intelligibil-
ity measure (eSTOI) [28] and the normalized covariance metric
(NCM) [29]. eSTOI is a popular metric in the speech enhance-
ment community and NCM was successfully used on vocoded
speech signals in previous CI studies [30, 7]. For comparison
purposes to other speech enhancement studies, we also report
SI-SDR results. All measures were computed for 105 sentences
from the evaluation dataset using the vocoded anechoic clean
speech as the reference (Table 1). Figure 2 left, middle and right
panels show average SI-SDR, eSTOI and NCM scores for the
whole range of SNRs (−20 dB to +20 dB). Error bars represent
95% confidence intervals.

3.2. Listening study
To assess the potential of the speech enhancement models in
restoring speech perception for people with cochlear implants,
we measured speech intelligibility for typically-hearing volun-
teers listening to CI-simulated stimuli. Details of this listening
study are given below.

3.2.1. Experimental procedure
Fifteen native English-speaking, volunteers with typical hear-
ing (average age 27.4 years) participated in this study, as part of
a larger research program that was approved by the National
Research Ethics committee for the East of England. Before
starting the test, the participants listened to 2 lists of 15 sen-
tences from the BKB dataset to acclimatize to vocoded speech.
After the acclimatization, Speech Reception Thresholds (SRTs)
were measured, as the SNR at which 50% of the speech was
understood correctly, for each of the 5 conditions listed in
section 3. We used one list of 15 sentences per condition
with a standard one-up / one down adaptive staircase proce-
dure in which the participants had to repeat the speech stim-
uli they heard to be scored by the experimenter. The procedure
started at 0 dB SNR and used a step size of 2 dB as described
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Figure 3: Individual (left) and mean (right) speech reception thresholds for the 5 conditions compared in the listening study.

in [31]. The condition order was randomized for each partic-
ipant and the procedure was repeated in reverse order to com-
pensate for any remaining learning effect throughout the ses-
sion. We used a double-blinded design, in which both the par-
ticipant and the experimenter were unaware as to which con-
dition was tested. Stimuli were presented to the participants
diotically through Sennheiser® HD600 headphones using an
RME® Fireface UCX soundcard in a sound-proof testing booth,
while the experimenter used a monitoring microphone to rate
the responses. A full testing session lasted about 1 hour, includ-
ing the acclimatization phase and short breaks.

3.2.2. Speech intelligibility results
All participants were able to perform the task and completed
the adaptive procedure for all conditions. Individual SRT re-
sults are shown in the left panel of Figure 3 for each partic-
ipant and the average results (denoted M on the x-axis) are
shown in the right panel. A repeated-measures analysis of vari-
ance revealed a significant main effect of condition [F (4, 14) =
547.9 ; p < 0.001] with no violation of sphericity. Bonferroni-
corrected pairwise comparisons showed highly significant mean
differences between all conditions except for the difference be-
tween the “Unprocessed” and “Single microphone” conditions
(see right panel of Figure 3). Mean SRTs were [6 dB, 5.6 dB,
2.2 dB, -2.5 dB, -17.3 dB] for the five conditions [Unprocessed,
Single microphone, 2 microphones, 6 microphones, IRM].

4. Discussion
Three algorithms based on the DP-RNN [4] and FaSNet [16]
were developed to jointly alleviate noise and reverberation ef-
fects on speech perception with CIs. We aimed to test these
promising end-to-end algorithms to assess their performance in
situations with noise and reverberation. Such challenging, but
realistic, situations may be prone to time-domain distortions and
difficult to master for any algorithm. The algorithms were im-
plemented to fulfill latency requirements for real-time process-
ing in hearing devices and had access to different numbers of
microphones placed either uni- or bilaterally in a behind-the-ear
hearing device. We discuss performance for the signal-based
prediction measures and the speech reception thresholds from a
listening experiment under CI-simulated conditions.

The three algorithms improved objective measure scores
over the unprocessed condition across a range of SNRs. We
note from Figure 2 and Table 1, that the single-microphone ap-
proach improved predicted intelligibility scores (eSTOI, NCM)
and signal distortion (SI-SDR) only for positive SNRs. In con-
trast, the algorithms using multiple microphones showed pre-
dicted improvements even for negative SNRs down to −16 dB.

Objective metrics indicated better signal to distortion ratios and
predicted intelligibility for the multi-microphone approaches
over the single-microphone one, especially in the noisiest cases.

For the fifteen participants that took part in this study, sta-
tistical analysis showed significant improvements of up to 7
dB in SRTs between the multi-microphone approach over both
the unprocessed condition and the single-microphone approach.
We also note on Figure 3 that some participants with low SRT
scores (< 6 dB) in the unprocessed condition obtained higher
SRTs for the single-microphone algorithm condition, meaning
speech intelligibility decreased after processing. On the other
hand, participants with higher SRTs for the unprocessed con-
dition (> 8 dB) seemed to benefit from the processing with
the single-microphone algorithm. These potential differences
across participants could arise from some participants being
able to tolerate more distortions or artefacts introduced by the
speech enhancement methods than others. This could also be
related to variable performance of the single-microphone algo-
rithm across SNRs as indicated by the objective measures.

While the purpose of this study was not to validate the
prediction accuracy of intelligibility metrics, it is of interest
whether objective measures and results from the listening study
agreed. We note that predicted intelligibility (eSTOI and NCM)
presented in Figure 2 correctly reflected the ranking between
conditions obtained with the SRTs from the listening study.
However, the objective measures eSTOI and NCM produced
quite different results quantitatively compared to the findings
from the listening study. This emphasises the need for more ac-
curate, possibly CI-specific, intelligibility prediction measures
for noisy and reverberant situations.

4.1. Conclusion and future possibilities
Two DNN algorithms were employed to perform joint denois-
ing and dereverberation. We find a clear superiority of multi-
microphone approaches in a listening study using cochlear im-
plant simulations. Interestingly, even with only 2 microphones
placed unilaterally, there was a significant improvement by 3.8
dB in SRT, which is a promising finding as many CI listeners
only have a single device available to them. Bilateral process-
ing may yield larger benefits still (7 dB) but also increases la-
tency and power consumption due to streaming across the ears.
Despite predicted benefits by the objective measures, the single-
microphone algorithm did not improve SRTs, which may be re-
lated to the joint task employed here. This motivates further in-
vestigation in conjunction with bilateral sound processing with
DNNs. These findings need to be confirmed with CI listeners
and future work should also investigate interaction effects on
auditory awareness of the acoustic environment.
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