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Abstract
Singing melody extraction is an important task in music infor-
mation retrieval. In this paper, we propose a multi-band time-
frequency attention network (MTANet) for singing melody ex-
traction from polyphonic music, which can generate the feature
representation to characterize the fundamental frequency (F0)
component. Moreover, a band partition scheme is proposed to
fit the position distribution of the F0 component. Further, three
hourglass sub-networks are used to capture various multi-band
features. Then, a feature fusion module (FFM) is employed to
fuse the multi-band features. Visualization analysis shows that
the multi-band feature extraction branch can generate the fea-
ture representation for characterizing the F0 component effec-
tively. Experimental results show that the MTANet outperforms
the existing state-of-the-art methods, while keeping with fewer
network parameters. Visualized results intuitively show that the
MTANet can reduce the octave and melody detection errors.
Index Terms: Melody extraction, Multi-band, Polyphonic mu-
sic, Band partition, Music information retrieval

1. Introduction
Singing melody extraction is a challenging task in the field
of music information retrieval (MIR) which aims to produce
a sequence of frequency values corresponding to the pitch of
the singing melody from polyphonic music [1, 2, 3]. The in-
strumental accompaniments and noises are interwoven with the
leading vocal, making the task challenging. Specifically, the
accompaniment element like chord progression will naturally
contain the leading voice F0 or its harmony, which makes it
not toilless to obtain the semantic representation that can effec-
tively distinguish the main melody from the background mu-
sic. Melody extraction has many downstream applications, such
as music transcription [4], query-by-humming [5], and singing
voice separation [6].

The basic idea of many deep learning-based methods is to
learn a mapping between a matrix representing input audio and
another matrix representing the predicted melody line [7, 8].
To learn this mapping adequately, some existing methods uti-
lized effective audio representations and model structures skill-
fully. For example, Bittner et al. constructed a new input rep-
resentation named harmonic constant-Q transform (HCQT) by
virtue of the harmonic relation and fed it into convolutional
neural networks (CNNs) to learn salience representations [9].
Yu et al. proposed a frequency-temporal attention network to
mimic human auditory assigning different weights in the time
and frequency axis [8]. Hsieh et al. proposed a streamlined
encoder-decoder network using a bottleneck layer to estimate
the existence of a melody for each time frame [7]. However,
the fixed convolutional structure may be along with the locally

constrained receptive field, which will be prone to cause oc-
tave errors (the prediction overtop the actual pitch by several
octaves) [10] and fail to capture long-dependency harmonic re-
lationship [11]. For this reason, several researchers have also
tried many unconventional convolutional or non-convolutional
methods, such as dilated convolution [12, 13] and self-attention
mechanism [14]. Chen et al. proposed a Tone-Combined Fre-
quency and Periodicity (Tone-CFP) representation, which rear-
ranges the tonal harmonics into adjacent bins to capture har-
monic relationships and predict the melody line by leveraging
self-attention modules [15]. Although the self-attention module
brings good performance, it also brings high computing costs.

The highly resonant voices produced by singers are prone
to cause that the higher harmonics have larger amplitudes than
the F0, which is the main acoustic cause of octave errors caused
by algorithmic misjudgments [3]. Therefore, it is vital to ob-
tain a semantic representation that can distinguish the F0 and
non-F0 components (e.g., accompaniment or higher harmonics
of singers). Meanwhile, we note that the F0 component tends to
be distributed in the spectrogram within a certain range, which
motivates us to utilize the positional properties in the spectro-
gram to characterize the F0 and non-F0 components. Given the
above considerations, we proposed the band partition scheme
and used hourglass sub-network [16] to capture multi-band fea-
tures that could characterize F0 and non-F0 components dis-
criminately. Through observing the channels in different layers
of our model, we found that there is a certain harmonic rela-
tionship inside feature. To make full use of the time-frequency
relationship within each channel and perform the aggregation
of multi-band features across channels, we proposed a feature
fusion module that pays more attention to internal information
of each channel. The contributions of this paper as follows:

i) We design a multi-band feature extraction branch in
MTANet. Visualization analysis shows it can effectively gen-
erate the feature representation for characterizing the F0 com-
ponent.

ii) We design a feature fusion module (FFM) to fuse multi-
band features to obtain more salient features characterizing the
melody line effectively.

iii) Our proposed MTANet achieves 86.9% of OA on
ADC2004 dataset, 89.2% of OA on MIREX05 dataset and
74.6% of OA on MEDLEY DB dataset, outperforming other
state-of-the-art CFP-based methods.

2. Proposed Method
Fig.1 is the overall architecture of the MTANet that has two
branches. In the top branch, the inputs are firstly partitioned into
the sub-bands features to fit the position distribution of the F0
and non-F0 components initially. Further, they are fed into three
hourglass sub-networks and concatenated to generate the fea-
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Figure 1: The overall architecture of multi-band time-frequency attention network (MTANet). The top branch contains three hourglass
sub-networks and a feature fusion module (FFM) embedded with the TFA block and conv-2D unit. The bottom branch is an auxiliary
detection branch (ADB). The S⃝ denotes Con in the formula (1), the c⃝ denotes the concatenation along the channel dimension.

ture representation that can distinguish both components. Then,
these features are fused by the feature fusion module (FFM) em-
bedded with the time-frequency attention (TFA) block. The bot-
tom branch named auxiliary detection branch (ADB) contains
stacked convolution layers with consecutive downsampling op-
erations, and outputs the feature with the size of 1 × T guiding
the presence of melody. Finally, the outputs of two branches
are concatenated along frequency dimension and then undergo
a softmax operation to estimate the melody.

2.1. Band Partition of CFP Representation

We also choose CFP representation as the inputs because of its
effectiveness [17]. The CFP representation, X ∈ R3×F×T ,
contains three parts: a power-scaled spectrogram, a generalized
cepstrum [18] and a generalized cepstrum of spectrum [19]. F
denotes the number of frequency bins of CFP and is set with 360
here, T denotes the time frame. The input features are firstly
split into two sub-bands to be processed discriminatively. To
partition the feature band more reasonably for processing fea-
tures discriminately, we analyze the statistics distribution of F0
of the samples in the training data. As shown in Fig.2, we find
that the F0 of the main melody is mainly distributed within the
third and fourth octaves for the frequency range of our selected
samples from 32 Hz (C1) to 2050Hz (B6). When the frequency
exceeds 1760Hz (348th bins), only the background music and
the higher harmonic components of the melody exist. Consid-
ering the complexity of the locating the F0 in the actual scene,
we only preliminary partition to guide the network to learn the
positional distribution of the two components.

Thus, we partition X along the frequency axis into two sub-
bands features X1 = X[:, 345 : 360, :], X2 = X[:, 1 : 348, :].
Meanwhile, we set an overlap of 4 bins for X1 and X2 to en-
sure the harmonic continuity of the features. To offset the infor-
mation loss caused by partition, we set the full band hourglass
network whose input is X as a supplement. Then, the outputs
of the three subnetworks are Y1, Y2 and Y , respectively. For
recovering the size of the features in the frequency dimension,
we concatenate the Y1 and Y2 to generate the Ŷ as follow:

Ŷ = Con(Y2[:, 1 : 344, :];

λY2[:, 345 : 348, :] + (1− λ)Y1[:, 1 : 4, :];

Y1[:, 5 : 16, :])

(1)

where Con(·) denotes a concatenation operation along fre-
quency dimension. For guiding the network to autonomously

Figure 2: Statistics of F0 acoustic locations in the training data.
The value within cell represents the ratio that one case where F0
appears in certain tone and octave compared with all cases.
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Figure 3: The architecture of hourglass sub-network. The kernel
sizes of transposed convolution and max pooling are both 2×2.

learn the weight of two multi-band features around the break-
point, we set a trainable parameter λ with an initial value of 0.5.

2.2. Hourglass Sub-network

Based on good feature extraction capability of hourglass sub-
network [20, 21], we replace the conventional convolution with
multi-scale feature aggregation (MFA) modules embedded with
multilevel dilated convolution to solve the octave error prob-
lem caused by the fixed receptive field. To compensate for the
loss of detailed information in higher-level semantic informa-
tion, we concatenate features of the same size, and the dashed
arrows indicate the dimension tracking here. Due to the T-F de-
pendency of the spectrogram is easier to be learned through the
neural network compared with that of the raw waveform sig-
nal, we use the multiple cascaded hybrid dilated CNN (HDC)
blocks [22, 23] to extract the fine-grained T-F dependency. The
details of the MFA module are shown in Fig.4. To cope with the
problem that the dilated convolution can only learn information
from surrounding pixels which can hardly learn global informa-
tion, we aggregate the output features of all the previous layers
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Figure 4: The diagram of the multi-scale feature aggregation
(MFA) module. d denotes the dilation factor of CNN.

along the channel dimension in the last layer [24] and recover
the same number of channels as the input by Con1×1.

For the HDC block, the coefficient i (index starts at 1) in
HDCi block is an index correlated with the dilation factor. Each
HDC block contains one traditional CNN with the kernel size
of 3×3 (Conv 3×3) and two asymmetric convolution blocks
which are more computationally efficient than the traditional 2-
D convolution [25, 26]. The first asymmetric convolution block
adopts the dilation rate of d = 2i. The second asymmetric
convolution block and Conv 3×3 adopt the same dilation rate,
d = 2i+1. Following the increase of i, the receptive field of the
HDCi block is increased by feat of an exponentially growing
dilation rate. For middle & low-frequency, high-frequency and
full-frequency band hourglass sub-networks, the number of out-
put channels of each HDC block is set to 16, 10 and 6. Mean-
while, the MFA modules are equipped with 4, 3 and 2 HDC
blocks same as [27] to meet the frequency span and role needs
of the three subnetworks processing features.

2.3. Feature Fusion Module

The feature fusion module (FFM) is a contribution of this work,
which includes a time-frequency attention (TFA) block and
Conv2D unit. Inspired by the idea of time-frequency atten-
tion mechanism [28, 8], we devise this module to fuse various
multi-band features as shown in Fig.1. Given the input feature
map Z ∈ RC×F×T , two operations of row average pooling
along the frequency and time axis are employed to calculate
the distribution of magnitudes along the time axis and tempo-
ral relationships for all frequency bins to generate Mf and Mt,
respectively.

Then, we choose the 1-D convolution to perform frequency
and temporal attention since it does well in learning the rela-
tionship along the frequency bins or time axis [8]. Relu and
sigmoid are utilized to perform nonlinear activation and obtain
feature maps Af ∈ RC×F×1 and At ∈ RC×1×T , the process
of operation can be written as:

Af = unsqueeze(σ(kf2 ∗ (δ(kf1 ∗Mf )))

At = unsqueeze(σ(kt2 ∗ (δ(kt1 ∗Mt)))
(2)

where kfi and kti denote the kernels of convolutional layer. ∗
denotes the convolutional operation, σ and δ the ReLU and sig-
moid activation functions and unsqueeze denotes the dimen-
sion expansion operation. For convenience, Fig.1 only draws
the process of generating Af and At for one channel of Z.

Then, the attention maps are obtained by matrix multiplica-

(a) (b) (c) (d) (e)

Figure 5: Visualization analysis. Diagram (a) is the ground
truth, (b) is the amplitude spectrogram from input X . Diagrams
(c) and (d) are extracted from Y and Ŷ in Fig.1. Diagram (e) is
the output of the feature fusion module, Z̃.

tion and the output of the TFA block Ẑ can be calculated as:

Ẑ = (Af ⊗At)⊙ Z′ (3)

where ⊗ and ⊙ denote the matrix multiplication of the last two
dimensions and element-wise product, respectively. Finally, the
Conv2D unit is employed to perform linear recombination of
inter-channel features and reduction of the channel dimension.

2.4. Visualization Analysis

To explore the effectiveness of each design within the multi-
band feature extraction branch, we make a visualization analy-
sis. As shown in Fig.5, (c) is an intermediate representation out-
putted from the full-frequency hourglass band sub-network. We
can see that the full-frequency band hourglass sub-network can
capture the low-frequency information though the input spec-
trogram has tiny energy in the low-frequency band. Compared
with (c), (d) includes more F0 components. This shows the ef-
fectiveness of band partition. As shown in diagrams (a) and (e),
the output of FFM can characterize the F0 components clearly,
which shows the fusion ability of FFM for the various frequency
band features.

3. EXPERIMENTS
3.1. Experimental Setup

We choose all 1,000 Chinese karaoke clips from the MIR-1K1

and 35 vocal tracks from the Medley DB [29] as the train-
ing data. Then, the 12 clips from ADC2004, 9 clips from
MIREX052, and 12 clips from MedleyDB are selected as the
testing data which all contain human singing melodies. Note
the testing data are not overlapped with the training data.

All data are re-sampled at 8 kHz. The STFT is calculated
with the window size of 768 samples and hop size of 80 sam-
ples. We divide the training clips into fixed length segments of
T = 128 frames, which is 1.28 seconds. To satisfy the frequency
resolution for singing melody extraction, the number of CFP
frequency bins is set to 360, with 60 bins per octave and 6 oc-
taves in total. The frequency range spans from 32 Hz to 2,050
Hz covering C1 to B6.

Our model implemented with Pytorch was trained and
tested in NVIDIA RTX 2080Ti GPUs. We choose the binary
cross entropy as the loss function, and the Adam optimizer [30]
with a learning rate of 0.0001 and batch size 8. Following the
convention in the literature, we use the following metrics for
performance evaluation: overall accuracy (OA), raw pitch accu-
racy (RPA), raw chroma accuracy (RCA), voicing recall (VR),
and voicing false alarm (VFA) from mir eval library [31]. For
verifying the octave accuracy, we also use the raw octave accu-
racy (ROA) [15] as a supplementary metric.

1https://sites.google.com/site/unvoicedsoundseparation/mir-1k
2https://labrosa.ee.columbia.edu/projects/melody
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Table 1: The comprehensive results of the MTANet and com-
pared methods on three datasets.

Dataset ADC2004
Metrics Params VR VFA↓ RPA RCA ROA OA

MCDNN[1] 5.6M 76.8 13.8 71.3 72.8 73.4 74.1
MSNet[7] 0.5M 88.6 15.3 78.6 79.3 85.8 79.7
FTANet[8] 3.4M 85.8 7.4 79.0 79.1 84.5 81.5
TONet[15] 214M 86.1 15.3 82.3 82.7 84.9 82.4
MTANet 0.3M 91.5 11.3 86.5 86.6 89.3 86.9
Dataset MIREX 05
Metrics Params VR VFA↓ RPA RCA ROA OA

MCDNN[1] 5.6M 72.5 7.9 69.5 69.9 70.7 77.7
MSNet[7] 0.5M 86.4 11.9 78.2 78.6 83.7 81.8
FTANet[8] 3.4M 85.7 5.4 80.2 80.2 84.3 85.4
TONet[15] 214M 88.4 7.9 82.1 82.9 86.8 85.8
MTANet 0.3M 91.8 4.2 85.5 85.5 88.5 89.2
Dataset MEDLEY DB
Metrics Params VR VFA↓ RPA RCA ROA OA

MCDNN[1] 5.6M 51.3 12.2 44 46.1 46.4 64.5
MSNet[7] 0.5M 62.6 14.5 52.7 54.6 57.3 68.1
FTANet[8] 3.4M 63.4 10.7 57.1 58.0 60.4 72.2
TONet[15] 214M 65.7 12.1 56.8 58.9 61.3 71.4
MTANet 0.3M 74.1 15.5 65.8 67.3 67.6 74.6

Table 2: Results of Ablation Study on the ADC2004 dataset.

Methods ADC2004
Ver. input A input B input C VR VFA↓ RPA RCA ROA OA

(i) X1 X2 X 91.5 11.3 86.5 86.6 89.3 86.9
(ii) X

′
1 X

′
2 X 87.4 12.5 83.9 83.9 84.6 85.4

(iii) X X X 87.5 19.2 80.8 81.6 84.9 80.8
(iv) X1 X X 86.4 14.2 79.0 79.2 84.0 80.2
(v) X X2 X 90.5 24.0 81.1 81.5 87.7 80.1
(vi) (i) w/o Overlap 86.0 8.0 83.9 83.9 84.6 85.4
(vii) (i) w/o FFM 80.6 7.2 76.4 76.7 79.3 79.5
(viii) (i) w/o ADB 89.5 14.7 84.1 84.9 86.7 84.3

3.2. Comprehensive Performance Comparison

To investigate the effectiveness of the proposed MTANet, we
compare it with four representative methods including the
MCDNN [1], MSNet [7], FTANet [8], and TONet [15] on three
datasets as shown in Tab.1. The CFP representation is employed
as the input and the TONet is the state-of-the-art method. We
carefully tuned the hyperparameters of four methods to ensure
that they reached peak performances on our training dataset.
The results show that the MTANet achieves the best scores ex-
cept the VFA on three test sets. Generally, OA is considered
more important than other metrics [3]. Compared with the sim-
ilar structure of MSNet, the improvement of the performance
fully verifies the effectiveness of the band partition scheme and
overall structure deployment. Meanwhile, we also achieve good
results on the basis of a large reduction in the parameters com-
pared with TONet with multi-head self-attention, which makes
our model more convenient for embedded design.

We also adopt a visualization approach to explore what
types of errors are solved by our model as shown in Fig.6. We
choose MSNet [7] to compare due to its structural similarity and
popularity. Specifically, we plot the predictive frequencies over
the time and ground truths by the MTANet and MSNet on one
opera song: “opera male5.wav” from the ADC2004. We can
observe that there are fewer octave errors (i.e., vertical jumps
in the contours) in (a) than (b). Furthermore, there are fewer
melody detection errors around 250ms and 750ms (i.e., predict-
ing a melody frame as a non-melody one) in (a) than (b).

3.3. Ablation Study
As shown in Tab.2, we conducted seven ablations to verify the
effectiveness of each design in the proposed MTANet. Due to
the page limit, we only selected the ADC2004 dataset for abla-
tion studies. More detailed results, pre-trained models and code
implementations are available online3. (i) denotes our proposed

3Codes are available in https://github.com/Annmixiu/MTANet

Figure 6: Visualized comparison between MTANet and MSNet
on opera male5.

(a) Opera male5 with MTANet (b) Opera male5 with MSNet

complete MTANet. (ii) denotes the model where we partition
X averagely and feed them into two sub-band hourglass sub-
network (i.e., X

′
1 = X[:, 1 : 182, :], X

′
2 = X[:, 178 : 360, :]).

To further explore the importance of the sub-band feature, we
conducted the test on models (iii) with X as the input of each
sub-band hourglass sub-network (i.e., without band partition).
Then, we replace X with X1 as the input of high-frequency
band hourglass sub-network as (iv), replace X with X2 as the
input of mid&low-frequency band hourglass sub-network as
(v). Meanwhile, (vi) denotes the model without the overlap
of 4 bins on the basis of (i) for exploring the importance of
boundary information between partitions. (vii) and (viii) de-
note the model without the feature fusion module and auxiliary
detection branch, respectively.

We make five observations. First, we compare (ii), (iii)
with (i). Most metrics decrease by 1.0-6.1%, which reflects the
effectiveness of partition by referring to the position distribution
of the F0 of the actual singing voice. Second, the comparison
between (iv), (v) and (iii) indicates that focusing on the in-
formation in a certain frequency band will cause performance
loss. Then, we also discover that ROA in (v) is better than that
in (iv). One possible reason is that the features emphasizing
non-F0 components are concatenated in the top of feature map,
which may have some negative effect on the subsequent F0 lo-
calization. Third, the results of (vi) show that all metrics reduce
especially ROA when removing the overlap, which confirms our
viewpoint that partition may destroy the harmonic information
around the breakpoint. Fourth, the results of (vii) show that
all metrics reduce significantly when removing the FFM, which
notes that FFM can effectively fuse multi-band features to char-
acterize the F0 component. Lastly, the results of (viii) verify
the auxiliary detection role of ADB.

4. Conclusions
In this paper, we propose a multi-band time-frequency atten-
tion network (MTANet) for singing melody extraction. Our
proposed band partition scheme is proven to be able to effec-
tively exploit the positional distribution of the F0 component
to further capture various multi-band features. Meanwhile, the
multi-band features are fused well with the help of the feature
fusion module (FFM). Experimental results show the MTANet
achieves promising performances. The visualized result intu-
itively shows that the MTANet can effectively reduce the oc-
tave errors and the melody detection errors. We will focus on
validating the performance of MTANet on more datasets and
explore more ways to partition efficiently in future work.

5. Acknowledgements
This work is supported by National Natural Science Foundation
of China (NSFC) (U1903213), Multi-lingual Infomation Tech-
nology Reasearch Cente of Xinjiang (ZDI145-21).

5399



6. References
[1] S. Kum, C. Oh, and J. Nam, “Melody extraction on vocal seg-

ments using multi-column deep neural networks.” in ISMIR, 2016,
pp. 819–825.

[2] W. T. Lu, L. Su et al., “Vocal melody extraction with semantic
segmentation and audio-symbolic domain transfer learning.” in
ISMIR, 2018, pp. 521–528.
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