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Abstract
Semi-supervised Sound Event Detection (SSED) is to recog-
nize the categories of events and mark their onset and offset
times using a small amount of weakly-labeled and a large-scale
of unlabeled data. To exploit unlabeled data effectively and re-
duce over-fitting, regularization techniques play a critical role
in SSED. In this paper, we proposed a novel jointly regularized
and locally down-sampled Conformer (Joint-Former) model for
SSED. Joint-Former first locally down-samples the spectrogram
and learns the token representations with high temporal resolu-
tion and low computational cost. Then, Joint-Former effectively
exploits unlabelled data in SSED by integrating Mean-Teacher
and Masked Spectrogram Modeling using joint regularization
through a multitask learning framework. Extensive experiments
on DCASE 2019, DCASE 2020, and DCASE 2021 task4 SSED
datasets show that Joint-Former greatly outperformed existing
methods.
Index Terms: Regularization, Masked spectrogram modeling,
Multi-task learning, Sound event detection

1. Introduction
Semi-supervised Sound Event Detection (SSED) is a widely
concerned task to recognize the categories of events and mark
the onset and offset times for each event in a mixed audio sig-
nal using a small amount of weakly-labeled and a large-scale
of unlabeled data. It generally contains two separate sub-tasks:
audio tagging and audio localization [1].

In the literature, Convolutional Recurrent Neural Network
(CRNN) [2, 3, 4, 5, 4] is often selected as the backbone net-
work for SSED, which uses a convolutional neural network
(CNN) as the front-end of a recurrent neural network (RNN)
so that the necessary frequency domain features are learned
together with temporal context features. Recently, benefiting
from the superiority in modeling the time correlation of sound
signals, Transformer-based models [6, 7, 8, 9] are introduced
into SSED. The Convolution-augmented Transformer (Con-
former) [10] was proposed and won the DCASE 2020 challenge
task 4 [8]. To model long-time sequential data in SSED, Con-
former uses several layers of CNN for global down-sampling.
As a result, the sound representations will be smoothed with
a lower temporal resolution, leading to less accurate boundary
detection for sound events.

As manual-labeled datasets are scarce, SSED tasks require
exploiting unlabeled data effectively to reduce over-fitting, typ-
ically through regularization techniques, e.g., consistency reg-
ularization. Recently, as one of the most popular consistency
regularization techniques, Mean-Teacher (MT) [11] model was
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shown to be effective in learning robust representations for
SSED [12, 13, 3, 14, 15, 16]. Given unlabeled data, the consis-
tency regularization assumption in the MT framework requires
the student model to predict consistently with the teacher model,
an average of consecutive student models. Clearly, regulariza-
tion plays a key role in solving SSED problems.

Another recent noteworthy work in audio representation is
Masked Spectrogram Modeling (MSM), which learns general
representation for audio with unlabeled data via self-supervised
learning, and then fine-tunes the model for downstream tasks
[17, 18, 19, 20, 21]. Models pre-trained by MSM can success-
fully capture the local correlations of the spectrogram when re-
constructing the masked spectrogram using only the unmasked
part. However, MSM pre-training usually comes with demand-
ing training and optimization challenges, which involve large-
scale training data and extremely long training time.

Aiming at learning a robust feature representation, in this
paper, we propose Joint-Former, a novel Jointly regularized
and locally down-sampled Conformer model for SSED. Specif-
ically, Joint-Former first down-samples the spectrogram and
learns the token representations with high temporal resolution
and low computational cost through the proposed intra-patch lo-
cal down-sampling strategy. Then, Joint-Former integrates MT
and MSM to facilitate the downstream tasks using joint regular-
ization through a multitask learning framework. The contribu-
tions of our work are summarized as follows,

• The joint (MT and MSM) regularization in Joint-Former al-
lows us to effectively exploit unlabelled data in SSED by ex-
ploring both the local correlations and the task-aware global
interactions for robust representation learning. Also, our
multi-task learning framework provides more effective train-
ing than MSM-based pre-training, especially with limited
(unlabelled) training samples.

• We propose a novel intra-patch local down-sampling strategy
in Joint-Former, which is particularly helpful when handling
the long-time spectrogram. High temporal resolution and low
computational cost are critical for SSED tasks.

• Extensive experiments on benchmark SSED datasets show
that Joint-Former greatly outperformed existing methods.

2. Methodology

In this section, we propose the jointly regularized and locally
down-sampled Conformer model (Joint-Former) for SSED. We
first describe the multi-task learning framework and the intra-
patch local down-sampling strategy in Joint-Former, and then
formulate the joint regularization using MSM and MT.
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Figure 1: The multi-task framework of the proposed Joint-Former, where red and green dashed rectangle represents the output of MSM
branch and SED branch, respectively.

2.1. Multi-task framework of Joint-Former

As shown in Fig. 1, the proposed Joint-Former contains two key
branches: the major branch for SED and the auxiliary branch for
MSM. The SED branch aims at learning event-aware represen-
tations from the raw spectrogram, while the MSM branch tries
to capture the natural local correlations. We design a muti-task
learning framework by sharing the CNN-based down-sampling
layers and the Conformer encoder between the two branches
so that event-aware features and natural local correlations are
learned together. In the following, we introduce our intra-patch
local down-sampling strategy, followed by detailed description
of each downstream branch.

2.1.1. Intra-patch Local Down-sampling Strategy

To alleviate the temporal resolution reduction in the token repre-
sentation, resulted from the global down-sampling in the vanilla
Conformer, we propose to perform the intra-patch local down-
sampling strategy.

Specifically, as shown in Fig. 1, given a D-dimensional
spectrogram X ∈ RT×D with T frames, we first patchify X
along the time dimension with patch size t, resulting in K = T

t
numbers of patches P = {Pk|k = 1, 2, ...,K}. So, each patch
contains t continuous frames of spectrogram features. Then,
we use a shared CNN F to down-sample each patch and ob-
tain the latent representations, i.e., patch tokens Z = {Zk|k =

1, 2, ...,K}, where Zk = F(Pk), and Zk ∈ R1×D′
. As a

result, each patch is down-sampled to 1-dimension along the
time-axis and mapped into D′-dimensional token representa-
tions by D′ convolutional kernels. In this case, the patch size
t equals to the down-sampling scale. Besides, the structure of
CNN F is the same as [8], which contains seven layers of con-
volutional blocks.

Different from a vanilla Conformer which down-samples
long-time data globally by adapting a CNN at the whole
sequence, Joint-Former uses the CNN inside each non-
overlapping patch only, which keeps the patch token higher

temporal resolution. Besides, the intra-patch local down-
sampling can be conducted in parallel, which greatly reduces
the computational cost.

2.1.2. Sound Event Detection Branch

After down-sampling, the patch tokens are concatenated with a
learnable event token, and then the positional encoding will be
embedded into the token sequence. Next, the token sequence is
delivered to the Conformer encoder to learn the global interac-
tions among tokens. Following [8], the encoder contains three
layers of the Conformer block. Finally, we use a prediction head
containing one layer of linear connection and a Sigmoid activa-
tion to get the SED predictions. More specifically, we use the
event token to get the predictions of audio tagging and adopt the
patch tokens to locate each sound event, i.e., audio localization.

2.1.3. Masked Spectrogram Modeling Branch

In the MSM branch, partial spectrogram patches are first
masked randomly, and then the unmasked patches are down-
sampled and embedded with the positional encoding. Note that
the positional encoding of the unmasked patches should be con-
sistent with their absolute position in the original patches. After
encoding, we get the latent embeddings of the unmasked patch
tokens. To reconstruct the original spectrogram, a shared and
learnable mask token will be repeated and interpolated into the
latent embeddings at the corresponding position.

Previously, MSM-based self-supervised learning only re-
constructs the masked part of the input to reduce the computa-
tion cost in the pre-training, and then fine-tunes the model for
downstream tasks. In Joint-Former, instead, we optimize the
MSM and downstream tasks together through multi-task learn-
ing, which is considered as another way of regularization in ad-
dition to MT model. As only reconstructing the masked parts
forces the model to pay too much attention to local correlations,
we reconstruct the whole spectrogram in Joint-Former.
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Figure 2: The computation graph of Joint-Former, where the
circles denote the data flow, and the rounded rectangles are
learnable modules.

2.2. Formulating the joint regularization

To effectively exploit unlabeled data in SSED, we jointly reg-
ularize the model training in Joint-Former through both MT
and MSM techniques. Specifically, the consistency regulariza-
tion assumption requires the student model to predict consis-
tently with the teacher model, where the teacher model is the
ensembled history of students by Exponential Moving Average
(EMA). Meanwhile, the student model is required to reconstruct
the spectrogram against masking perturbation. So, the MSM
task can be considered as an auxiliary regularization task. Fol-
lowing the computation graph of our Joint-Former as shown in
Fig. 2, we now formulate the joint regularization in details.

For the student model S, given the input spectrogram X ,
we get the predictions Ŷ for audio tagging and ŷ for localiza-
tion (shown in Eq. (1)), where P , G, Be, e, and F presents
prediction head, Conformer Encoder, event embeddings, initial
event tokens, and down-sampling layers, respectively.

Ŷ , ŷ = P(G(Be(e),F(X ))) (1)

For consistency regularization, we ensemble the consecu-
tive student models over the previous training steps by EMA
with a smoothing decay α as the current teacher model T ,

θ′t = αθ′t−1 + (1− α)θt, (2)

where θt and θ′t denotes the parameters set of student S at t
training step and teacher T , respectively. Then, a consistency
cost ℓcon is applied between the predictions of S and T when
given the unlabeled data,

ℓcon(Ŷ
′, ŷ′; Ŷ , ŷ) = BCE(Ŷ , Ŷ ′) +BCE(ŷ, ŷ′), (3)

where Ŷ ′ and ŷ′ denotes the prediction of the teacher model in
audio tagging and localization, respectively.

For MSM auxiliary regularization, we compute a recon-
struction cost ℓrec(X̂ ,X ) = MSE(X̂ ,X ) between the inputs
X and the reconstructed spectrogram X̂ ,

X̂ = D(G(Be(e),F(Xm)),Bm(m)), (4)

where D, Xm, Bm, and m presents decoder, masked spectro-
gram, mask embedding, and initial mask tokens, respectively.

Table 1: Results of ablation study, where “Down.” and “Reg.”
denotes down-sampling strategies and regularization technolo-
gies, respectively. Best results are bolded.

Model ablations Down. Reg. Event-F1

(1#) ConformerSED [8] global consistency 46.6%
(2#) 1# - CNN none consistency 31.4%
(3#) 2# + local down. local consistency 48.4%

(Joint-Former) 3# + MSM local joint 51.3%

Finally, we join the above regularization terms with the su-
pervised SED loss ℓsup for robust representation learning in
SSED,

L = ℓsup + w(t)(ℓcon + λℓrec), (5)

where w(t) is the weight of joint regularization at the t − th
training step, ramped up during the training, and λ is a fixed
weight of the MSM auxiliary regularization.

3. Experimental Evaluation
3.1. Experiment Setup

To evaluate the performance of our proposed model, we com-
pare Joint-Former with ConformerSED [8], the winner in
DCASE 2020 challenge task 4, on the DCASE 2019 [22], 2020
[23], and 2021 [24] task 4 challenge datasets. The training
sets in these tasks all contain the same 1578 audio clips with a
weak label and 14,412 unlabeled real-recorded audio clips, but
a different number of synthetic strongly labeled samples (2,045,
2,584, and 10,000 for the three tasks, respectively). For the met-
rics, we use event-based macro F1 (Event-F1), used in DCASE
2019 and 2020 challenges, and Polyphonic Sound Detection
Scores (PSDS-1 and PSDS-2) [25], used in DCASE 2021.

For a fair comparison, the SED branch in Joint-Former has
the same architecture as ConformerSED [8]. Also, we extract
the 64-dimensional log Mel spectrogram features with the 323
hop size and 1024 sampling width for each clip down-sampled
to 16kHz, leading to a total of 496 frames. The mask ratio
and auxiliary regularization weight in Eq. (5) is chosen as
50% and 0.1 by grid search, respectively. The down-sampling
scale (patch size) is set as 8. ConformerSED won in DCASE
2020 challenge task 4. For a more general comparison, we re-
produce ConformerSED [8] results on DCASE 2019 and 2021
datasets following the same experiment setup they adopted on
the DCASE 2020 dataset. Ablation studies are conducted on
the DCASE 2019 dataset to investigate the influences of each
component in Joint-Former. The source code of our work is
available1.

3.2. Ablation studies

3.2.1. Intra-patch local down-sampling

As shown in Table. 1, we conduct three groups of experiments
to evaluate the impact of down-sampling in Joint-Former, i.e.,
(1#) the global down-sampling in vanilla Conformer [8], (2#)
without down-sampling (by removing the CNN-based down-
sampling layers from (1#)) and (3#) our intra-patch local down-
sampling. Clearly, removing the down-sampling layers (2#)
leads to great performance degradation for SSED when com-
pared to (1#) the vanilla Conformer. In contrast, there is a

1https://github.com/mastergofujs/Joint-Former
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Figure 3: Visulizations of the token embeddings from (a) global
down-sampling strategy in ConformerSED [8] and (b) intra-
patch local down-sampling strategy in Joint-Former (ours).

Table 2: Performance comparison between one-/two-stage
training for Joint-Former on DCASE 2019 dataset.

Models Event-F1 Training steps

ConformerSED 46.6% 30,000

Two-stage training 47.2% 30,000 * 2
One-stage training 51.3% 30,000

1.8% performance gain on Event-F1 by our (3#) intra-patch lo-
cal down-sampling strategy.

Additionally, in Fig. 3 we visualize the token represen-
tations gained from the global and local down-sampling, re-
spectively. Compared with smoothed tokens resulted from the
global down-sampling in the vanilla Conformer (Fig. 3 (a)), the
qualitative results in Fig. 3 (b) clearly show that the resolution
of token representations obtained by our local down-sampling is
improved greatly, especially along the time-axis, which is criti-
cal for SSED tasks.

3.2.2. Joint regularization

Next, we evaluate the influence of the proposed joint regular-
ization. Clearly, when compared with single consistency regu-
larization, the MSM-based auxiliary regularization achieves an-
other 2.9% performance gain (The last row of Table. 1).

3.2.3. Two-stage vs. one-stage training

Typically, MSM-based representation learning is a two-stage
process: pre-training and fine-tuning, where the pre-training
stage usually requires a huge amount of training data. In Joint-
Former, instead, we exploit unlabeled data with our novel joint
regularization, a one-stage multi-task learning framework.

As a comparison, we also implemented Joint-Former with
the two-stage training on the DCASE 2019 dataset. Specifically,
in the first stage, we freeze the SED branch and pre-train the
MSM branch in Joint-Former. Then, we freeze the MSM branch
and fine-tune the Conformer model (the SED branch in Joint-
Former) through consistency regularization in the second stage.

As shown in Table 2, compared to ConformerSED [8], the

Table 3: Performance comparison with SOTAs methods on
DCASE 2019, 2020, and 2021 challenge datasets. “–” denotes
the results are not reported, and the underline means the repro-
duced results. Best results are bolded.

Models 2019 2020 2021
Event-F1 Event-F1 PSDS1 PSDS2

GL [2] 42.7% – – –
Sparse-Trans [7] – 47.6% – –
CNN-Trans [6] – – 29.2% 55.0%

ConformerSED [8] 46.6% 46.0% 29.7% 52.0%
Joint-Former 51.3% 49.5% 33.9% 55.1%

two-stage pre-trained Joint-Former only improves 0.6% (from
46.6% to 47.2%) on Event-F1, while the Joint-Former with one-
stage training improves 4.7%. Recall that the DCASE 2019
dataset only contains about 10,000 unlabeled training samples.
We believe this is not sufficient to support an MSM-based
model pre-training. In contrast, the remarkable performance of
Joint-Former with one-stage training clearly demonstrates the
effectiveness of our multi-task learning framework in exploit-
ing unlabeled data for SSED.

3.3. Performance comparison with SOTAs

To extensively evaluate the performance of Joint-Former, we
compare it with the state-of-the-art (SOTA) models on DCASE
2019, 2020, and 2021 challenge datasets, including GL [2]
(winner of DCASE 2019), Sparse-Trans [7], CNN-Trans [6],
and ConformerSED [8] (winner of DCASE 2020). Here, we
compare only with none-ensemble methods as Joint-Former is
not an ensemble-based method. As shown in Table 3, Joint-
Former greatly improves the performance on all the metrics on
these benchmark datasets. Specifically, the performance gain of
Joint-Former is 4.7%, 3.5%, 4.2%, and 3.1% on DCASE 2019,
2020, and 2021 datasets, respectively. The superior perfor-
mance of Joint-Former over the SOTAs clearly demonstrates the
effectiveness of joint regularization and local down-sampling.

4. Conclusion
In the field of SSED, it is critical to learn robust representa-
tion from semi-labeled data, i.e., a training set that contains a
small amount of weakly labeled and a large-scale of unlabeled
data. In this paper, we proposed a novel jointly regularized
and locally down-sampled Conformer (Joint-Former) model.
Joint-Former can model long-time sequential data efficiently by
an intra-patch local down-sampling strategy, and exploit unla-
beled data effectively through multitask joint (MT and MSM)
regularization. Extensive experiments on benchmark datasets
clearly demonstrate the superior performance of Joint-Former
for SSED.
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