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Abstract
Modern automatic translation systems aim at supporting the
users by providing contextual knowledge. In this framework, a
critical task is the output enrichment with information regarding
the mentioned entities. This is currently achieved by processing
the generated translations with named entity recognition (NER)
tools and retrieving their description from knowledge bases. In
light of the recent promising results shown by direct speech
translation (ST) models and the known weaknesses of cascades
(error propagation and additional latency), in this paper we pro-
pose multitask models that jointly perform ST and NER, and
compare them with a cascade baseline. Experimental results on
three language pairs (en-es/fr/it) show that our models signifi-
cantly outperform the cascade on the NER task (by 0.4-1.0 F1),
without degradation in terms of translation quality, and with the
same computational efficiency of a plain direct ST model.
Index Terms: augmented translation, speech translation,
named entity recognition, direct, multi-task

1. Introduction
Drawing inspiration from augmented reality, where real-world
vision is complemented with overlaid relevant information,
“augmented translation” [1] is an emerging research line aimed
to enrich automatically-generated translations with semantic in-
formation by highlighting named entities (NEs) and key con-
cepts (the focus of this work) and eventually linking them to
external knowledge bases (an aspect we do not cover here). On
one side, this can ease, speed up, and improve the generation
of fluent and high-quality translations by professional transla-
tors and post-editors; on the other, it provides end users with
additional information that may be needed to fully understand a
sentence, especially in highly specialized domains.1

Current solutions rely on a cascade architecture comprising
a text-to-text machine translation (MT) system whose output is
fed to a NE recognition (NER) model [2]. No work has in-
stead explored its application to speech-to-text translation (ST),
and the possibility of jointly performing the ST and NER tasks
with a single model, despite positive signals from related fields.
Indeed, in the task of NER from speech, the traditional cas-
cade approach – composed of an automatic speech recognition
(ASR) system followed by an NER model – has been recently
challenged by the competitiveness of direct models that perform
the two tasks jointly [3, 4, 5, 6]. Similarly, in MT, multitask
models that jointly perform MT and NER have been shown to
improve NE accuracy without degrading translation quality [7].

In light of this and the competitive results of direct ST mod-
els [8, 9] compared to the conventional ASR+MT pipeline [10,

1https://intelligent-information.blog/en/augmented-translation-
puts-translators-back-in-the-center/

Figure 1: Architecture of the inline solution. The additional
tokens generated in the output are highlighted in green, and are
passed to the decoder as all the other previous output tokens.

11], in this paper we address two research questions: (1) Is the
current cascade of an ST system (either direct ST or ASR+MT)
followed by an NER tool better than performing the two tasks
with a single model? (2) What are the effects on NE accuracy
and translation quality of using a single multi-task model?

To answer these questions, we explore different methods to
jointly perform ST and NER.2 Our experiments on three lan-
guage pairs show that joint models significantly outperform the
ST+NER cascade by 0.4-1.0 F1 in the NER task while being
on par in terms of translation quality. Such improvement is
achieved without introducing any computational overhead with
respect to a plain ST model, making our solution remarkably
more efficient than the cascade approach. This is directly re-
flected in the computational-aware latency in simultaneous ST
scenarios, where our best model jointly performs ST and NER
with the same latency (and quality) as an ST-only model.

2. Joint NER and ST
The easiest way to extract the NEs from a translation consists in
applying an NER model on the output of the ST model. Hence-
forth, we refer to this approach as cascade, and we consider it as
a baseline for comparison against our systems that jointly per-
form the two tasks with a single model. Our solutions – inline,
and parallel – are described below:
Inline (Fig. 1). The vocabulary of the direct ST model is ex-
tended with tags that represent the start (e.g., <LOC>) and end
(e.g., </LOC>) of the NE categories to be recognized which, in
our case, are 18,3 for a total of 36 entries. These tags are treated
as all other tokens (subwords): they are predicted in the out-
put sequence, and – together with the other tokens – fed to the

2Code available at: https://github.com/hlt-mt/FBK-fairseq.
3The categories are those defined in the OntoNotes annotation [12].
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decoder as previous output tokens, informing it about the NE
categories. This solution does not require architectural changes
to the ST model but introduces additional overhead, especially
at inference time, as the higher number of tokens to generate
(due to the additional start/end NE tags) leads to an increase in
the number of forward passes on the autoregressive decoder.
Parallel (Fig. 2). At each time step, two linear layers pro-
cess in parallel the output of the last decoder layer: one maps
the vectors to the vocabulary space to predict the next token
as in standard ST models; the other maps the same vectors to
the NE-category space to predict the NE category to which the
token belongs, if any, or O (i.e. OTHER), if the token is not
part of a NE. Although the second linear layer introduces ad-
ditional parameters to train, its computational cost is negligible
compared to that of the whole decoder. Moreover, this solution
avoids the supplementary decoder forward passes required by
the inline method. However, the potential drawback in compar-
ison with the inline solution is that it cannot exploit information
about the NE categories predicted for the previously generated
tokens during translation. As we posit that this lack of informa-
tion may cause performance degradation, we propose a variant
of this method in which the embeddings of the previous out-
put tokens are summed with learned embeddings of their cor-
responding NE categories.4 This change requires only 19 addi-
tional embeddings to learn (one for each NE category, plus O)
– a negligible number compared to the target vocabulary size –
and a sum, hence producing no significant computational over-
head. We refer to this variant as Parallel + NE emb.

3. Experimental Settings
Models. All our ST models are fed with 80 features extracted
from the audio every 10ms with sample windows of 25ms.
These sequences of features are processed by two 1D convo-
lutional layers that reduce the sequence length by a factor of 4,
before passing them to a 12-layers Conformer encoder [13], and
a 6-layer autoregressive Transformer decoder [14]. We use 512
features with 1024 hidden neurons in the FFN for both the en-
coder and decoder. The target vocabulary is created with 8,000
BPE [15] merge rules. As a result, our models have 116M pa-
rameters that we optimize with label-smoothed cross-entropy
loss [16] (0.1 smoothing factor) and an auxiliary CTC [17]
loss on the output of 8th encoder layer with the transcript as
the target to improve model convergence [18]. Moreover, we
adopt CTC compression [19] to reduce the input dimension
and speed up both training and inference. As optimizer, we
use Adam [20], and the learning rate is initially increased for
20k steps up to 0.005 and then it decreases with the inverse
squared root policy. We train on 4 K80 GPUs with 10k to-
kens per mini-batch and 8 as update frequency. The training
stops after 5 epochs without loss decrease on the validation set,
and average 5 checkpoints around the best. At inference time,
we decode using beam search with 5 as beam size. The ASR
model of our ASR+MT+NER pipelines is trained on the same
data and with the same method described for the ST models. We
rely on a multilingual BERT-based model,5 openly-available in
DeepPavlov [21], as NER system and, on the 1.3B-parameters
distilled NLLB [22] as MT model.
Data and Evaluation Metrics. All models are trained on
MuST-C [23] and Europarl-ST [24]. To train the joint NER
and ST models, we automatically annotated the NEs on the tar-

4The beginning-of-sentence (bos) token is considered of O category.
5http://docs.deeppavlov.ai/en/master/features/models/bert.html

Figure 2: Architecture of the parallel solution. The introduced
linear layer (in green) is processed token-by-token in parallel
with the other linear layer. In the + NE emb. variant (yellow
dotted area), the previous tags are converted into embeddings
that are summed to those of the corresponding previous tokens.

get translations with the same NER tool used in our cascade
approach, obtaining parallel training data with speech and the
corresponding annotated translations without any manual in-
tervention. Translation quality is evaluated with SacreBLEU6

[25] on the Europarl-ST test set. Regarding NEs, instead, we
measure three aspects on NEuRoparl-ST benchmark [26]: 1)
the generation of the correct translation, 2) the recognition (or
identification) of the NEs in the generated text, and 3) the clas-
sification with the correct NE category. First, we use NE accu-
racy (case-insensitive, for the sake of comparison with previous
work) to assess the ability to translate NEs. Second, we com-
pute F1 to measure the ability in recognizing NEs, although F1
is also influenced by the NE translation quality, as it is com-
puted by considering as correct only those NEs that are accu-
rately translated and identified, but disregarding their category
classification. As such, NEs that are poorly translated and rec-
ognized by a model penalize both recall and precision. The
strict F1 definition mirrors the users’ perception: in augmented
ST, while unrecognized NEs are only a lack of help to the users,
recognized but incorrect NEs are more harmful as they would
distract them with unrelated and potentially misleading content.
Lastly, we use classification accuracy to measure the percentage
of NEs assigned to the correct category.

4. Results
Translation Quality (Overall and at NE Level). First, to en-
sure the soundness of our experimental settings and, in turn, of
our analysis, we compare our base direct ST model with recent
works on Europarl-ST (Table 1). As shown by the results, our
systems outperform, to the best of our knowledge, all recently
published scores on the same benchmark. This confirms the
strength of our models and the reliability of our results.

In Table 2, instead, we compare our cascade ST+NER and
ASR+MT+NER baselines, the joint ST&NER inline and paral-
lel methods, and the only previous work [26] that reports scores
(NE accuracy) on the NEuRoparl-ST benchmark (using a direct
ST system trained on a large amount of data). We can notice
that, even though trained on fewer data, the direct ST models
of our cascade ST+NER baselines compare favourably with the

6case:mixed|eff:no|tok:13a|smooth:exp|version:2.0.0
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Model en-es en-fr en-it
BLEU NE Acc F1 Cat. Acc. BLEU NE Acc F1 Cat. Acc. BLEU NE Acc F1 Cat. Acc.

Prev. work [26] 37.7 71.4 - - 30.1 67.3 - - 26.0 67.3 - -
Cascade (ASR+MT+NER) 37.3 71.0 47.4 89.9 37.6 68.8 44.6 90.2 26.2 64.8 42.0 87.5
Cascade (ST+NER) 37.9 71.9 49.1 89.8 36.2 69.2 44.8 90.2 28.3 66.5 44.5 88.8
Inline 37.9 72.2 49.5†‡ 90.1 36.3 69.6 45.6†‡ 90.2 28.3 66.9 45.5†‡ 89.4
Parallel 38.1 71.9 48.1 89.5 36.1 69.0 44.5 90.6 28.4 67.5 43.9 89.1

+ NE emb. 38.0 72.1 49.5†‡ 89.9 36.1 69.3 45.5†‡ 90.4 28.2 67.3 45.4†‡ 89.1
Table 2: BLEU (↑), case-insensitive NE accuracy (↑), F1 (↑), and category classification accuracy (Cat. Acc., ↑) of previous work, our
cascades (ASR+MT+NER and ST+NER) and the proposed joint ST&NER models. All results are the average of three runs. † indicates
statistically significant improvements over ST+NER, and ‡ over parallel. A result is considered statistically significant if we can reject
with 95% confidence the null hypothesis that the considered mean is not higher than the mean of the baseline with Student’s t-test [27].

Model en-es en-fr en-it
ASR+MT [24] 28.0 23.4 -
NPDA-kNN-ST [28] 29.0 27.7 20.5
STR+KD [29] - 29.3 -
NEuRoparl-ST [26] 37.7 30.1 26.0
Triangle Multi [30] 37.4 35.4 28.2
Ours 37.9 36.2 28.3

Table 1: BLEU (↑) of our direct ST system in comparison with
previous ST works on Europarl-ST.

previous work not only in terms of translation quality (BLEU),
but also in NE accuracy. In particular, the NE accuracy of our
cascade ST+NER baseline is superior on average on the three
language pairs, as the gains in en-es (+0.5) and en-fr (+1.9) are
only partially balanced by the small drop in en-it (-0.8). In addi-
tion, the full cascade model (ASR+MT+NER) – despite lever-
aging NLLB, which is trained on a large amount of data, and
the good ASR performance (12.5 WER, slightly better than the
ASR trained on thousands of hours presented in [26]) – is infe-
rior to the ST+NER baseline on all metrics, with the only excep-
tion of the en-fr BLEU. This further demonstrates the strength
of our cascade ST+NER baseline.

Focusing on the comparison of the cascade and joint meth-
ods in performing the ST and NER tasks, we notice that the per-
formance of both inline and parallel models are close in terms
of translation quality, both generic (BLEU) and specific to NEs
(NE accuracy), compared to the ST+NER baseline. The small
differences among the scores of the various methods (up to 0.2
BLEU and up to 0.6 NE accuracy) are not consistent across lan-
guage directions and are never statistically significant, thus be-
ing ascribable to fluctuations due to the inherent randomness of
neural methods. We can conclude that the additional NER task
does not bring any improvement to ST in terms of NE trans-
lation (in contrast with previous findings for MT [7]) but also
does not degrade translation quality, as it could have happened
since part of the model is dedicated to the additional task.
NE Recognition. When we consider the F1 metric, instead,
the results highlight the differences between the various ap-
proaches. Our joint NER and ST approaches beat the cascade
by a statistically significant margin on all language pairs (0.4-
1.0 F1). This is surprising if we consider that the training data
of the joint methods was generated with the NER system of the
cascade approach, and highlights the strength of direct multitask
systems. Among the joint solutions, the inline and parallel +
NE emb. significantly outperform the parallel method, proving
the importance of feeding the decoder with information about

Figure 3: Confusion matrix over the 15 NE categories with at
least one NE correctly translated and recognized for the paral-
lel + NE emb. system on en-es. On the y-axis, there are the true
labels, while on the x-axis the predicted labels. The numbers
are percentages computed on the y-axis.

the NE category predicted for the previously generated tokens.
The difference between inline and parallel + NE emb., however,
is very small (0.1, if any) and not statistically significant. These
two methods can therefore be considered on par.
NE Classification. Lastly, all systems (joint and cascade) show
a good ability in NE category classification. The accuracy dif-
ferences range between 0.6 and 0.3, are not coherent across lan-
guage pairs and are never statistically significant. Not only their
overall performance is on par, but also their confusion matrices
over the NE categories are basically the same on all language
pairs. As an example, Fig. 3 reports the confusion matrix of
the parallel + NE emb. model for en-es. The classification
accuracy is high (87.95-100%) for all categories but three: fa-
cilities (FAC), events (EVENT), and names of laws (LAW). FAC
and EVENT are very rare (19 and 9 occurrences in the test set),
while LAW is more frequent (141 occurrences), thus represent-
ing the main source of classification errors. The root of this
difficulty may lay in the nature of law names, which have high
variability, are long, and frequent only in specific domains. At
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last, another common source of errors is classifying GPE as
location names, which is unsurprising as their categorization
highly depends on the context in which they occur (e.g. Europe
as a continent is a LOC, but in politics it can be a GPE).

5. Efficiency in Simultaneous ST
One known advantage of direct systems over cascade ones is
their lower overall computational cost since they need a forward
pass on only one model instead of two. For this reason, in ap-
plications where the computational cost is particularly critical,
such as in simultaneous ST (SimulST), where it directly affects
the output latency, direct ST systems obtain a significantly bet-
ter latency-quality trade-off than ASR+MT solutions [11, 31].

However, in our case of ST and NER, the computational
cost is not only determined by the choice of a cascade or a full
direct system, but also by which of the two joint solutions is
used. Indeed, the number of decoding steps (i.e. forward passes
on the autoregressive decoder) required by the inline and par-
allel systems is different: the former method has to predict the
start and end NE tags, requiring on average 7% more decoding
steps on the Europarl-ST test set compared to a plain ST model
and to the parallel systems, which do not introduce additional
decoding steps. For this reason, we conclude our work by com-
paring the two best models (inline and parallel + NE emb) in
the simultaneous setting using the popular wait-k [32] policy.

The wait-k policy consists in initially waiting for a prede-
fined number of words (k) before starting to alternate between
WRITE (emit a word) and READ (wait for more input audio)
actions. Since the source is speech, the information about the
number of words is not already present in the input, therefore
a word detection strategy is applied to determine how many
words have been pronounced at each time step. Here, we use
an adaptive word detection strategy [33, 34] that estimates the
number of words in an audio segment by counting them in the
transcripts predicted by the CTC module trained on the encoded
audio. The choice of this method is motivated by its favorable
performance compared to other word detection strategies [35].
The wait-k policy is directly applied to offline-trained models
without the need for any adaptation for the task, as this approach
has been demonstrated to be competitive with the one adopting
models specifically trained to work in simultaneous [36].

Evaluating the performance in simultaneous allows us to
estimate the overhead introduced by the additional decoding
steps of the inline model compared to the parallel + NE emb.
one. In Fig. 4, we report the BLEU- and F1-latency curves
computed on the outputs obtained by running the SimulEval
tool [37] on the two joint NER&ST models for en-es (for the
sake of brevity, we do not report the curves for en-fr and en-it
that show the same trends). We also report the BLEU-latency
curve of the direct ST-only model as a reference, while we do
not show the cascade ST+NER as the computational cost (and
hence, latency) is significantly higher. Latency is measured
through computational-aware length-adaptive average lagging
(LAAL) [38]. The k value of the wait-k policy is varied from 1
to 3 (k = {1, 2, 3}), in order to reach different latency regimes.

The curves show that the parallel + NE emb model has
the same latency and quality of an ST-only model, despite the
additional NER task to perform. The inline solution, instead,
has similar quality but features a (slightly) increased latency,
because of its higher computational cost. However, since the
computational cost only accounts for a fraction of the latency
(∼53% of the computational-aware LAAL is due to the wait
time of the wait-k policy), and the computational difference is
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Figure 4: BLEU- and F1-LAAL curves for en-es of the inline
and parallel + NE emb solutions (we also include an ST-only
system as reference). Each point corresponds to a different
value of k = {1, 2, 3} and is the average over three models.

not large (∼5%), the gap between the two models is limited.
All in all, we can conclude that the inline model introduces

a computational overhead that depends on the number of NEs
detected in an utterance. On our test set, with 1,267 sentences,
30.6K words, and 1,638 NEs, we estimated as 5% its computa-
tional overhead in time compared to a base direct ST model and
to our parallel + NE emb. solution. In light of the similar qual-
ity of inline and parallel + NE emb. systems, this difference –
which may be larger in domains where NEs are more frequent,
as news or molecular biology [39] – makes the parallel + NE
emb. method our best solution overall.

6. Conclusions
We presented the first multitask models jointly performing
speech translation and named entity recognition. First, we
showed the importance of properly feeding information about
the previously predicted NE tags, as done in the inline and par-
allel + NE emb. models. Second, and most importantly, we
showed that our joint solutions consistently outperform a cas-
cade system on the NER task (by 0.4-1.0 F1), while being on
par in terms of translation quality. Lastly, we evaluated the com-
putational efficiency of our methods and demonstrated that the
parallel + NE emb. system, which does not introduce notice-
able overhead with respect to a plain ST model, is more efficient
than the inline method, besides being on par in terms of transla-
tion and NER quality. As such, it represents the most attractive
solution to jointly perform ST and NER, especially in the si-
multaneous scenario where its computational-aware latency is
the same as a single model performing the ST task only.
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