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Abstract
We propose a multi-channel separation method for moving
sound sources. We build upon a recent beamformer for a mov-
ing speaker using attention-based tracking. This method uses an
attention mechanism to compute the time-varying spatial statis-
tics which enables tracking the moving source. While this prior
work aimed to extract a single target source, we simultaneously
estimate multiple sources. Our main technical contribution is
to introduce attention-based tracking into the iterative source
steering algorithm for independent vector analysis (IVA), en-
abling joint estimation of multiple sources. We experimentally
show that the proposed method greatly improves the separation
performance for moving speakers, including an absolute reduc-
tion of 27.2% in word error rate compared to time-invariant
IVA. In addition, we demonstrate that the proposed method is
effective as a pre-processing for sound event detection, showing
an improvement in F1 scores of up to 4.7% in real recordings.
Index Terms: speech separation, moving source, independent
vector analysis, self-attention network

1. Introduction
Sound source separation is a technique to estimate individual
sources from their mixture [1]. Its variants can be broadly clas-
sified into single- and multi-channel methods. Single-channel
methods achieve very high performance through the supervised
learning of deep neural networks (DNNs) [2]. However, they
suffer from distortion, and the domain shift between training
and evaluation is often problematic [3]. On the other hand,
multi-channel methods add an extra spatial dimension which
enables low distortion and robust performance. But they re-
quire multiple microphones. Beamforming and independent
vector analysis (IVA) are two examples of multi-channel meth-
ods. Beamforming targets a single source [4], while IVA simul-
taneously estimates beamformers for multiple sources assumed
statistically independent [5, 6]. While traditionally limited by
the accuracy of the estimated source statistics, using DNNs for
the task has recently led to a breakthrough in performance [7, 8].

These sound source separation techniques are used as pre-
processing for various applications, e.g., automatic speech
recognition (ASR). For example, beamformer has been shown
to reliably improve the performance of ASR due to its dis-
tortionless processing [9]. Beyond speech, separation has
been recently used as pre-processing for sound event detec-
tion (SED) [10, 11, 12, 13, 14]. For single-channel SED, sep-
aration has been shown to be useful [11] but the performance
is likely adversely impacted by domain shift. The unsupervised
learning of separation was shown to be helpful for bird classi-
fication [10]. Similarly, with multi-channel recordings, initial
work has shown the effectiveness of IVA as a pre-processing

method [12, 13]. Nevertheless, the effectiveness of multi-
channel methods based on beamforming and IVA for speech
and SED has been so far mostly demonstrated for static sources.
This is a serious challenge to their practical applicability.

To alleviate this limitation, Ochiai et al. have proposed to
combine beamforming with self-attention-based tracking [15].
Generally, the spatial covariance matrices (SCMs) needed for
the computation of the beamforming weights are obtained by
time-averaging the instantaneous SCMs (ISCMs) over multiple
frames, assuming that the sources are not moving. This results
in a time-invariant demixing matrix. Instead, they propose to
use attention weights that indicate which ISCM to focus on
for estimating the demixing matrix at each frame. Attention
weights are estimated from ISCMs through the self-attention
network. ISCMs capture the local spatial information of the
source and the attention weights combine it into robust instan-
taneous spatial statistics. The effectiveness of this approach has
been shown for speech enhancement, but its extensions to the
separation of multiple sources have yet to be investigated.

Our contributions in this paper are as follows. 1) Based
on the success of DNN-supported IVA and self-attention-based
tracking, we propose multi-channel separation methods for
moving sound sources. We propose both a straightforward ex-
tension of [15] to multiple targets, and a time-varying IVA that
introduces the attention mechanism into the low-complexity it-
erative source steering (ISS) algorithm [16]. 2) We propose an
efficient architecture for estimating the attention weights from
simple spatial features with lower dimensionality than the IS-
CMs used in [15]. 3) We demonstrate the effectiveness of
the approach both for speech separation and sound event de-
tection. Experimental results showed that the proposed meth-
ods achieved separation even for moving sources, unlike the
conventional time-invariant approach, and the proposed separa-
tion improved SED performance by properly extracting moving
events such as footsteps.

2. Backgrounds
We model the observed mixture in the short-time Fourier trans-
form (STFT) domain represented as,

xft = Aftsft + bft, (1)

where Aft ∈ CM×K is the mixing matrix, sft is the clean
sources, bft is the background noise, and M and K are the
number of microphones and sources, respectively. Notations
f = 1, ..., F and t = 1, ..., T denote the frequency bin and
the time frame index, respectively. Assuming that the source
is not moving, the mixing matrix becomes time-invariant, i.e.,
Aft = Af . Hereafter, A⊤ and AH denote the transpose and
conjugate transpose of A, respectively.
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2.1. Independent vector analysis

IVA is a blind source separation method. Assuming static
sources and the determined case, where M = K, we obtain the
separated sources yft using the time-invariant demixing matrix
W IVA

f ∈ CM×M as,

yft = W IVA
f xft. (2)

The demixing matrix is estimated by maximizing the log-
likelihood of the observed signals, assuming independence of
the sources and a statistical distribution for individual sources.
For the optimization, we use ISS, an efficient iterative method
based on majorization-minimization [16]. ISS updates the
demixing matrix sequentially for m = 1 to M [16]:

W IVA
f ←W IVA

f − vkf (w
IVA
kf )H, (3)

umkft = rmftymft(ykft)
∗, dmkft = rmft|ykft|2, (4)

vmkf =

{∑
t umkft∑
t dmkft

if m ̸= k,

1−
(∑

t dmkft

)−1/2
if m = k,

(5)

where vkf = [v1kf , ..., vMkf ]
⊤, (wIVA

kf )H is the kth row of
W IVA

f , and rmft = φft(Ym) with (Ym)ft = ymft. Albeit
derived from the source model, the function φ(·)ft can be in-
terpreted as masking the target source to estimate statistics of
noise and interference [16]. This makes it a good target to be
replaced by a DNN, which has been shown to significantly im-
prove the performance [8].

We note that a method derived from IVA for moving sound
sources with the time-invariant filter that is robust to the move-
ment has been proposed [17]. However, the moving area is re-
stricted due to the time-invariant filter, and no solution has been
presented yet for the general case.

2.2. Beamforming of one moving source

The beamformer aims to extract one source (i.e., K = 1) as,

yfn = (wf )
Hxfn. (6)

We can compute the beamformer weight vector wf ∈ CM us-
ing the SCMs. For example, the minimum variance distortion-
less response (MVDR) beamformer weights are given by,

wMVDR
ft =

(ΦN
ft)

−1ΦS
ft

Tr((ΦN
ft)

−1ΦS
ft)

u, (7)

where ΦS
ft ∈ CM×M and ΦN

ft ∈ CM×M are SCMs of tar-
get source and noise, respectively. u ∈ RM is a one-hot vec-
tor selecting the reference microphone and Tr(·) denote the
trace of the matrix. These SCMs are estimated using the time-
frequency (T-F) masks as follows [18, 19, 15]:

Φν
f =

∑
t
Ψν

ft, with Ψν
ft = γν

ftxftx
H
ft, (8)

where Ψν
ft is the estimated ISCM, γν

ft ∈ [0, 1] is a T-F mask
normalized so that

∑
t γ

ν
ft = 1, and ν ∈ {S,N} are the indexes

for the target source and noise, respectively. Although Eq. (7)
indicates the time-varying beamformer coefficients, it actually
becomes time-invariant due to the time averaging of the ISCMs.
Therefore, the beamformer cannot handle the moving sources.

To relax this limitation, Ochiai et al. have proposed
the time-varying beamformer with self-attention-based weight-
ing [15]. They propose to use an attention-mechanism to pro-
duce a time-varying weights matrix cν ∈ RT×T , and replace
the time-invariant SCM of (8) by a time-varying SCM,

Φν
ft =

∑
τ
cνtτΨ

ν
ft, (9)

where ctτ = (cν)t,τ . In [15], the attention weights are esti-
mated from the ISCMs by a multi-layer self-attention network.
Since the ISCMs capture the spatial information, high-quality
estimates of the time-varying SCMs are obtained. The method
not only dramatically improved the separation performance for
moving sources, but also static ones.

3. Proposed method
We propose two multi-channel separation methods for moving
sources. The first is the straightforward extension of [15] to
multiple targets where masks and attention matrices are esti-
mated for all M sources by the supporting DNN. The second
is a novel extension of IVA that incorporates the self-attention-
based weighting into ISS. We modify the ISS updates as follows
to estimate a time-varying demixing matrix Wfn:

W IVA
ft ←W IVA

ft − vkft(w
IVA
kft )

H, (10)

vmkft =

{∑
τ cmtτumkfτ∑
τ cmtτdmkfτ

if m ̸= k,

1−
(∑

τ cmtτdmkfτ

)−1/2
if m = k.

(11)

Conventional IVA has used all frames for the estimation of
vmkf , but it is not appropriate for moving sources. In the pro-
posed IVA, we expect that self-attention-based weighting se-
lects the useful frame for updating the demixing matrix.

In addition, we propose in the following sub-sections alter-
native architectures for the attention and mask modules.

3.1. Attention module

Using the ISCMs directly as input as in [15] scales quadratically
with the number of microphones. Instead, we modify a tried-
and-tested architecture proposed for SELD [13]. Specifically,
we obtain the attention weights as cm = AttModule(rm⊙x)
where rm is the T-F mask of the IVA or MVDR. AttModule(·)
receives the input x ∈ CM×F×T and processes it as follows:

z0 = Mel(Concat(|x|2, SpaFeat(x))) (12)
z1 = Conv(10 log10(z0)), (13)
cm = SelfAtt(z1), (14)

where the Mel(·) is mel-scale transform with 128 filterbanks
and SpaFeat(·) extracts the spatial features with D dimensions
such as the intensity vector [20, 21, 22]. Conv(·) transforms
z0 ∈ RM+D×128×T to z1 ∈ RT×128 through convolution
layers. SelfAtt(·) calculates the self-attention using linear and
softmax layers through a Transformer encoder where the num-
ber of heads is four and the dimension of a feed-forward net-
work is 1000. Preliminary experiments showed that SELD fea-
tures work as well as ISCMs, despite the smaller dimension.

3.2. Mask module

In prior work for DNN-supported IVA, the mask is estimated in-
dependently for all source estimates [8]. In the early iterations
of ISS, such an approach cannot effectively estimate the masks.
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Table 1: Average SDR (dB), PESQ, STOI, and WER (%) of the separated signals from the test set. The average WER of the reverberant
target sources on moving-0, moving-1, and moving-2 were 10.7, 10.7, and 11.0, respectively. ⋆ indicates that it is the reference score
because the oracle masks were also used during the evaluation.

moving-0 moving-1 moving-2
Method SDR↑ PESQ↑ STOI↑ WER↓ SDR↑ PESQ↑ STOI↑ WER↓ SDR↑ PESQ↑ STOI↑ WER↓
Mixture -0.15 1.28 0.70 72.2 -0.15 1.28 0.71 72.3 -0.14 1.28 0.71 74.0

ATT-MVDR 9.61 1.95 0.87 13.9 6.65 1.67 0.82 20.8 4.83 1.50 0.77 34.3
oracle mask⋆ 11.56 2.12 0.90 11.6 8.80 1.87 0.87 13.9 7.18 1.71 0.84 19.5

TIV-IVA 10.65 1.95 0.89 11.6 4.06 1.55 0.79 20.8 -0.02 1.27 0.67 54.9
ONL-IVA 5.14 1.49 0.79 19.1 1.97 1.33 0.72 36.1 -0.20 1.24 0.66 60.1
BLK-IVA 8.84 1.79 0.87 14.2 4.49 1.49 0.79 20.5 1.86 1.32 0.71 44.0
ATT-IVA 13.54 2.36 0.93 11.3 10.78 2.12 0.90 13.1 7.65 1.70 0.83 27.7

To improve the convergence speed of ISS iterations, we use in-
stead a network that jointly estimates the mask for all source
estimates. Nevertheless, our mask module is almost the same
as the conventional one using the GLU block layers [8]. For
the joint estimation, the input log-magnitude spectrograms are
stacked along the frequency axis and the dimension is reduced
to F from MF by linear projection. Then, this is followed by
the GLU Blocks and a transposed convolution layer as [8] and
we split the output to obtain M T-F masks.

For MVDR, we adopt a mask module of bidirectional long
short-term memory layers with 400 hidden units [23].

4. Experiments
We conducted two separate experiments for speech and sound
events. Beyond separation, we assess the improvement of the
downstream task metrics for ASR and SED, respectively.

4.1. Speech separation

4.1.1. Experimental setup

Dataset: We generate a dataset of noisy and reverberant mix-
tures of two speech sources. The dataset is replicated three
times: with two static sources (moving-0), one static and
one dynamic sources (moving-1), and two dynamic sources
(moving-2). The speech is from WSJ0 [24] and WSJ1 [25]
datasets with pairs and relative mixing ratios (−5 dB to 5 dB)
identical to the WSJ1 2mix dataset [26]. The noise is from
the CHiME3 [27] dataset, mixed with SNR from 10 dB to
30 dB relative to the reverberant speech mixtures. The sam-
pling rate is 16 kHz. Reverberation is simulated using the ran-
domized image source method [28] implemented in pyrooma-
coustics [29]. The scene geometry loosely follows [15]. The
rectangular rooms dimensions are random between 3m to 8m.
The two sources and the center of the microphone array are at
least 50 cm from walls. The two microphones correspond to
channels 3 and 6 of the array of CHiME3. The x coordinate of
the array center is within 0.5m to 1.5m. Accordingly, sources
have x coordinate larger than 1.5m. For moving sources, start
and end locations are sampled uniformly at random from the
allowed volume. The trajectory is discretized on 20 points uni-
formly sampled from the line segment. The source speed is
determined by the length of the segment and of the speech.
Comparison methods: We compared the proposed attention-
based IVA (ATT-IVA) and MVDR (ATT-MVDR) with time-
invariant (TIV-IVA), online (ONL-IVA), and blockwise IVA
(BLK-IVA). TIV-IVA used cmt = 1/T and, ONL-IVA and
BLK-IVA obtained it as in [15] with the forgetting factor of
0.999 and the block size of 50, respectively, where all IVA
methods use the mask module described in Sec. 3.2. In addition
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Figure 1: Visualization of the attention weight. The colormap is
in logarithmic scale to visualize small values.

to joint optimization of mask and attention of ATT-MVDR, we
also train the attention only with an oracle mask model [30] to
understand the performance limits. For TIV-IVA, only the static
dataset moving-0 was used for the training and validation.
Training details: Unlike previous work [15], we simul-
taneously optimized the attention and mask modules with
the source-aggregated signal-to-distortion ratio (SA-SDR)
loss [31]. Since we are in the determined case, we can use
A = W−1 to obtain the source steering vectors and recon-
struct M channels separated signals. The optimizer was Adam
with a learning rate 0.0001 and linear warm-up over the first
10,000 steps. The minibatch size was eight and the training
samples were trimmed or zero-padded to seven seconds. We
trained for at least 150 epochs and up to 420 epochs to select
the best checkpoints. The STFT used window and shift sizes of
4096 and 1024, respectively, and a Hann window. The number
of ISS iterations was ten for TIV-IVA and five for the others.
For SpaFeat(·), we used the frequency-normalized interchan-
nel phase differences [32, 33].

4.1.2. Experimental Results

Table 1 summarizes the evaluation results where the metrics
are SDR, perceptual evaluation of speech quality (PESQ), and
short-time objective intelligibility (STOI). In addition, we eval-
uate the word error rate (WER) with the Whisper large-v2
model [34]. First, we can confirm that we succeeded in jointly
optimizing the attention and mask modules of ATT-MVDR and
ATT-IVA, unlike the previous work. ATT-IVA achieved the best
performance under most conditions, even when compared to
ATT-MVDR with oracle masks. As in previous reports [15], in-
troducing attention weight improved the performance not only
for moving sources but also for non-moving sources. Certainly,
using attention allows to dynamically adapt to varying noise.
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Table 2: Average SDR (↑) for sound event separation on the
synthetic validation set.

Method Mixture TIV-IVA ATT-IVA

SDR ↑ -6.04 -4.13 0.71

Table 3: Average macro-F1 score on the validation split of the
STARSS22 dataset [35] of real scenes. The ⋆ indicates that
Classwise uses some oracle data and is provided for reference.

MIX TIV ATT TIV+ATT Classwise⋆

0.5559 0.5681 0.5706 0.5793 0.6026

Figure 1 shows an example of spectrograms and attention
weights from moving-1. We can see that the weights are
concentrated on the diagonal, i.e., local information, especially
when the interference source is moving. However, a large num-
ber of small magnitude off-diagonal components are also used,
which likely helps stabilizing the SCM computation. It is rea-
sonable that the weights are more uniformly distributed when
the interference source is not moving since multiple frames have
similar spatial characteristics and can be used for averaging.

4.2. SED with separation
4.2.1. Experimental setup

Dataset: The sound event separator is trained on a dataset of
simulated sound event mixtures created following the method-
ology of the DCASE 2022 SELD baseline [35]. The original
dataset did not contain sufficiently many moving sources and
was modified as follows. The maximum overlap count is in-
creased to four. Events from all classes move with probability
0.75. We added sounds from non-target classes to allow sepa-
ration of interfering sounds. We generated 36.7 h and 3.3 h of
training and validation data, respectively. For the training of the
SED models, we used the official DCASE 2022 Task 3 baseline
training and validation sets [35]. Testing was conducted on the
validation set since the official test set has not yet been released.
The DOA annotations are discarded since we focus on the SED
task only. We use the first-order ambisonics format with four
channels sampled at 24 kHz. The number of classes is thirteen.
Model structure and comparison methods: We built the SED
models with and without separated signals. The models re-
ceive log-mel spectrograms of the single-channel signals. When
we use only the mixture, we obtain an event probability vector
through Conv(·), eight conformer layers with a kernel size of
7, a linear layer, and a sigmoid function. When we use separa-
tion, two sets of Conv(·) and conformer layers are prepared to
extract the feature of the mixture and separated signals, respec-
tively. Then, a feature of the mixture is added to each of the
features obtained from M separated signals. From the features,
we obtain M event probability vectors and they are combined
by the max operation. We used the max operation because only
one of the M predictions may detect the event if each event was
perfectly separated [12]. We built several SED models using
separation, but this late fusion approach was the best as in [11].
Training and evaluation details: We trained the TIV- and
ATT-IVA for 100 epochs with five ISS iterations. The window
and shift size of the STFT were 2048 and 512 samples. For
ATT-IVA, we used the intensity vector as SpaFeat(·) and set
the weight decay to 0.0001 to prevent overfitting. We trained the
SED models for 1,000 epochs using binary cross-entropy loss,
Adam optimizer with a learning rate of 0.001, and SpecAug-
ment [36]. The minibatch size was 128. We do a learning rate

Fe
m

al
e 

 sp
ee

ch

M
al

e 
 sp

ee
ch

Cl
ap

pi
ng

Te
le

ph
on

e

La
ug

ht
er

Do
m

es
tic

 
 so

un
ds W
al

k

Do
or

M
us

ic

M
us

ica
l 

 in
st

ru
m

en
t

W
at

er
 ta

p

Be
ll

Kn
oc

k

0.2

0.4

0.6

0.8 MIX TIV ATT

Figure 2: Classwise analysis of the F1 scores

warm-up over the first 10,000 steps. For the STFT, the frame,
window, and shift sizes were set to 1024, 600, and 240 samples,
respectively. For the evaluation, we averaged the predictions of
the best five models.

4.2.2. Experimental Results
Table 2 shows the SDR scores of the signals separated by TIV-
IVA and ATT-IVA on the dataset of synthetic event mixtures.
The absolute SDR is low, but TIV- and ATT-IVA provide 2 and
6 dB improvement, respectively, over the mixture SDR.

Next, we evaluated the SED performance. Table 3 shows
the macro-F1 score. MIX used only the mixture, while TIV and
ATT used the mixture and the separated signals by TIV-IVA and
ATT-IVA, respectively. TIV+ATT used the average of the out-
put of ten models, five TIV and five ATT. From the Table 3, we
can see that the separation is effective since TIV and ATT out-
perform MIX. When breaking down the performance by class,
shown in Figure 2, we observed that TIV and ATT have very
complementary strengths and weaknesses. As one would ex-
pect, ATT performed very well for Walk, which clearly involves
movement. Surprisingly, ATT also achieved high performance
for Water tap. Informal listening tests revealed that several such
samples also feature loud music that only ATT was able to iso-
late from the water sounds (see Example1 of the SED experi-
ments at our demo site1). On the other hand, TIV performed
best for fairly static sources such as speech. This motivated the
combination of both classifiers (ATT+TIV) by averaging, which
lead to a boost of close to 1%. Going yet further, one could
choose to use either or both classifiers on a per class basis. We
test this hypothesis by only using the best of MIX/TIV/ATT as
shown in Figure 2 and achieve F1 score of 0.60 , an absolute
improvement of 4.7% over using only the mixture. However,
this result should be treated as indicative only since we used the
validation data to choose the classifiers to use. Regardless, com-
bining different separation approaches is a promising direction.

5. Conclusion
We proposed two multi-channel separation methods for mov-
ing sources. ATT-MVDR is a straightforward extension of the
conventional MVDR for moving speakers to multiple targets.
ATT-IVA introduced attention weights to the ISS algorithm. In
the evaluation of the speech separation, ATT-IVA achieved high
performance including situations where both two speakers were
moving. For SED, the performance was strongly dependent
on the class, and combining time invariant and varying meth-
ods brought large improvements. Overall, we found IVA easier
to train and performing better than MVDR-based separation,
which we attribute to the joint formulation of IVA and the good
numerical properties of ISS. The combination of ATT and TIV
is a promising research line. Furthermore, the rapid progress of
all neural approaches should be taken into account [37].

1http://www.robinscheibler.org/
interspeech2023-moving-iva-samples
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