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Abstract
Speech enhancement approaches based on neural networks,
aim to learn a noisy-to-clean transformation using a supervised
learning paradigm. However, networks trained in this way may
not be effective at handling languages and types of noise that
were not present in the training data. To address this issue, this
study focuses on unsupervised domain adaptation, specifically
for large-domain-gap cases. In this setup, we have noisy speech
data from the new domain but the corresponding clean speech
data are not available. We propose an adaptation method that
is based on domain-adversarial training followed by iterative
self-training where the quality of the estimated speech used as
pseudo labels is monitored by the performance of the adapted
network on labeled data from the source domain. Experimental
results show that our method effectively mitigates the domain
mismatch between training and test sets, and surpasses the cur-
rent baseline.
Index Terms: speech enhancement, domain shift, domain
adaptation, self-training

1. Introduction
Speech enhancement (SE) aims to improve the quality of speech
signals in various noisy environments. Its goal is to remove or
reduce the background noise and to enhance the speech signal
for better intelligibility and an improved listening experience
[1, 2]. It is a key element for immersive audio experiences in
telecommunication as well as a crucial front-end processor for
robust speech recognition, assistive hearing, and robust speaker
recognition.

Classical approaches to speech enhancement rely on cer-
tain assumptions about the statistical properties of the signals
being analyzed (see e.g. [3]). The goal is to use mathematical
criteria to estimate the original speech signal that is being ob-
scured by noise or other interference. In contrast, more recent
approaches based on deep learning are moving away from this
traditional modeling approach and instead embracing a data-
driven approach. A plethora of deep-learning-based approaches
have been presented [4]. The main idea is to train a DNN in a
supervised manner to enhance the noisy input and estimate the
clean speaker. Training is usually carried out on a synthetically
built dataset constructed from clean and noise signals. These
DNN-based approaches, which can be divided into frequency-
domain [4] and time-domain methods [5, 6, 7], outperform clas-
sic model-based approaches.

A speech enhancement network can be exploited to ob-
tain speech signals in the context of other languages, speakers,
recording environments and noise types. Introducing unfamiliar
scenarios to a well-trained SE system can cause severe perfor-
mance degradation. This is caused by a mismatch between the

speech characteristics used to train the network (source domain)
and the speech characteristics it encounters in the target domain,
which is commonly referred to as the domain shift problem.
Collecting enough annotated data for each new domain is not
always possible and training from scratch a separate SE sys-
tem for each noisy speech type is impractical. In an Unsuper-
vised Domain Adaptation (UDA) setup we assume the avail-
ability of noisy speech from the target domain but without the
corresponding clean speech. Despite variations in languages,
speakers, genders, and environments, human languages possess
similar acoustic structures. Hence, it is still possible to adapt a
well-trained SE network to different settings in an unsupervised
manner. In recent years, several studies have addressed the
UDA problem in speech enhancement. Liao et al. [8] applied
Domain-Adversarial Neural Network (DANN) [9] for speech
enhancement in a domain shift scenario. They assumed that
the noise type of all the samples of both source and target do-
mains is known and the adversarial classifier’s goal is to predict
the noise type (rather than the domain-identify as was done in
[9]). Mixture Invariant Training (MixIT) is a self-supervised ap-
proach that enables unsupervised domain adaptation without the
need for ground-truth source waveforms [10]. Although MixIT
has been successfully used for various SE tasks, it requires ac-
cess to the in-domain noise. To address this issue, Tzinis et al.
proposed RemixIT [11], which adapts a teacher-student train-
ing framework to achieve state-of-the-art performance on var-
ious SE tasks. The flexibility of the framework allows for the
use of any SE model as the teacher model. Although RemixIT
scored high on the DNS-Challenge [12] test set, their approach
depends on obtaining predicted speech with reasonable qual-
ity from the target domain noisy samples. Therefore, in cases
where the source and target domains are far apart, this method
tends to fail due to the low-quality pseudo-labels provided to
the student. This situation might occur if the speech data in the
two domains are in different languages with distinct phoneme
sets for instance. In the case of classification tasks, examples
can be selected based on the confidence of the teacher network
in the prediction [13]. However, SE networks do not provide
any indication as to the quality of the predicted speech.

Here we propose a two-stage UDA algorithm designed to
handle large-domain-gap scenarios. First, a domain-adversarial
model is applied to bring the two domains closer in the fea-
ture space. Then, a self-training framework uses this pre-
trained model as initialization for a teacher network that pro-
duces qualitative pseudo-labels on the target domain for the stu-
dent, even for distant domains. We also combine supervised
training on source samples, in decreasing proportions during
the self-training. Training to predict clean speech from the
source domain monitors the quality of the predicted speech in
the target domain where clean speech is not available. Experi-
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mental results on standard publicly available datsets, show that
our method effectively mitigates the domain mismatch between
training and test sets, and surpasses the current baseline.

2. The domain adaptation method
The noisy speech signal can be represented as follows:

x(t) = s(t) + n(t), (1)

where x(t) represents the noisy speech, s(t) and n(t) are the
speech and additive noise signals, respectively. The observed
noisy signal (1) can be rephrased in the short-time Fourier trans-
form (STFT) domain with

x(k,m) = s(k,m) + n(k,m),

where s(k,m) is the speech, and n(k,m) is the noise. The
terms k ∈ {0, . . . ,K − 1} and m ∈ {0, . . . ,M − 1} represent
the frequency and time-frame indices, respectively.

In deep learning-based speech enhancement, the noisy
speech is fed to a network that performs a non-linear procedure
to generate an estimate of the clean speech ŝ given the noisy in-
put x. The network is trained in a supervised way using pairs of
clean and noisy speech.

We address a domain shift problem where the network was
trained on noisy speech and we want to apply the network to
enhance speech signals from another domain that consists of
languages, recording environments and noise types that do not
appear in the data used to train the model. We assume here the
availability of noisy speech from the target domain but no corre-
sponding clean speech. Our method is composed of two-stages.
First, we apply adversarial training that aligns the distributions
of the source and the target domains. The second step is a self-
training algorithm based on computing pseudo labels for the
target domain data. These two steps are described bellow.

Domain-Adversarial Training (DAT). Domain adversar-
ial training is designed to learn a domain-invariant represen-
tation by reducing the bias presented in the data from differ-
ent domains [9]. The Domain-Adversarial Neural Network
(DANN) is composed of three main elements: an encoder net-
work f = E(x; θenc), which takes in the noisy speech x and
generates the feature vector f, the decoder network D(f; θdec)
that utilizes f to produce the estimated clean acoustic feature ŝ,
and a binary classification network Disc(f; θdisc) that distin-
guishes between the source and target domains. In the learning
phase we jointly minimize the enhancement loss and maximize
the domain classifier loss:

LDAT(θenc, θdec, θdisc) = Lenhancement − β ·Ldomain-classifier. (2)

where β is a constant (see details in the experiments section).
Labeled samples from the source domain contribute to both
losses whereas samples from the target domain contribute only
to the second loss. The optimization finds the best trade-off be-
tween producing features that are domain invariant and are also
useful for the main task of speech enhancement. The model is
trained by using a gradient reversal layer (GRL) which is placed
between the encoder and discriminator in the initial architec-
ture. This layer ensures that the gradient computed during back-
propagation is negated in sign, which means that the encoder is
trained to maximize the discriminator’s loss instead of minimiz-
ing it. In this case, the discriminator can be pre-trained to clas-
sify the domains and is kept frozen during the UDA procedure.
The DANN architecture is illustrated in Fig 1. We employed
DAT as a pre-processing step for the second stage training.

Figure 1: The domain-adversarial training framework.

Self-training with pseudo labels. Self-training [14] con-
verts model predictions of unlabeled noisy samples from the
target domain into pseudo labels. This method involves two key
steps. The teacher network (obtained by the DAT step) gener-
ates a set of pseudo-labels in the target domain (predicted clean
speech and noise). Then, a student network is trained using the
noisy samples along with the predicted clean speech. Here we
followed the RemixIT approach [11], where the teacher pro-
vides estimated speech and noise signals, s̃ and ñ, as pseudo-
labels. Then, the estimated noises are randomly shuffled within
a mini-batch and combined with the teacher’s speech estimates
to generate a set of bootstrapped mixtures x̃:

x̃ = s̃ + Pñ ∈ RB×T , (3)

where B is the mini-batch size, T is the size of the speech sam-
ples and P is a permutation matrix that rearranges the predicted
noise in the current mini-batch. The student model is then
trained using these bootstrapped mixtures as inputs and by pre-
dicting the teacher’s pseudo-target signals s̃ and Pñ, by applying
a standard supervised training procedure. Another property of
the RemixIT method is that the teacher network is updated mul-
tiple times to learn from higher-quality source estimates, thus
enabling the model to continually improve its performance.

Reliable pseudo labels. In the RemixIT implementation of
self-training to speech enhancement, [11], the teacher network
is pre-trained in a supervised manner on the source domain.
Therefore, if the gap between the source and the target is rela-
tively large, the quality of the teacher’s enhancement results on
the noisy target speech samples is poor which yields misleading
pseudo-labels. The domain-adversarial training step produces a
more suitable teacher network and thus enables a warm start
for the noisy-labels steps. However, even with this adapted net-
work, the resulting network may perform better on some target
samples than others, and the quality of the pseudo-labels is un-
certain.

The framework of adversarial training followed by iterative
self-training with pseudo labels has been shown to effectively
address domain shift issues in image classification and segmen-
tation tasks. This approach, as demonstrated in studies such
as [15, 13], involves selecting target samples with more reli-
able pseudo-labels, determined based on the confidence of the
teacher network’s class prediction. However, the major chal-
lenge in applying this approach to speech enhancement is that
the output of the network is an estimated speech signal with-
out any indication of the network’s confidence in the estimated
speech’s quality. Without feedback on the quality of the pseudo-
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Algorithm 1 Source Regularization Self Training (SRST)

Input: labeled data from the source domain and unlabeled
data from the target domain.
- Apply DAT domain adaptation algorithm.
- Train a source-target domain binary classifier.
- Select the source samples that are classified as targets.
- Generate speech and noise predictions using the teacher net-
work.
for k in 1 until convergence do

Train a student network by minimizing the loss:
L = LRemixIT + λLsource, s.t. λ is decreased at each epoch k.
end for

labels, there is no explicit guidance for improving the quality of
the predicted speech.

Figure 2: A Scheme of the SRST loss function.
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Figure 3: Histogram of source and target domain soft decisions
after the domain-adversarial algorithm. The dashed line indi-
cates the 30% of the source samples that are classified as targets
with the highest probability.

Applying pseudo-labels to speech enhancement suffers
from the problem of a lack of information on their quality. In
the UDA setup there are accurate labels from the source do-
main data, and adding labeled data to the pseudo-labeled data
from the target domain can encourage the student network to
produce a meaningful estimation of the clean data. The prob-
lem, of course, is that the labeled dataset is from the source
domain and hence is not suitable for our goal of learning an
enhancement network for the target domain. Domain adver-
sarial training is designed to reduce the distance between the
features of samples from the two domains but we cannot re-
move it completely. The crux of our approach is adding source
domain samples that are similar to the target domain samples
to the RemixIT self-training scheme. As part of the domain-
adversarial training step, we have already built a binary classi-

fier that can distinguish between samples from the source and
target domains. Our approach involves selecting the subset of
samples from the source domain with the highest probability of
being classified as target examples. Fig. 3 shows the densities
of the soft decision outcomes of the binary domain classifier for
the source and target domains after the domain adversarial adap-
tation step (see next section for details on the source and target
domains data). It shows that the feature alignment DANN al-
gorithm makes the two plots closer buts the classifier can still
distinguish between the source and target domain. In addition,
there are source domain examples that are more similar to the
target domain than others. These source samples that look like
targets, serve as intermediate training data to adapt the network
to the target domain. The minibatch-level loss for training the
student network is thus:

L = LRemixIT + λLsource (4)

such that the first component is a loss function used for target
domain data to penalize the reconstruction error between the
estimates and their corresponding pseudo-labels. The second
component is the same loss function which is this time applied
on the source domain speech estimates and their corresponding
true speech signal. The scalar λ is monotonically decreased at
each epoch. below we show that, unlike RemixtIT, there is no
need for iterations of updating the teacher network and recom-
puting the pseudo-labels. We dub the proposed method Source
Regularization Self Training (SRST). Fig. 2 shows a scheme of
the SRST training procedure and the algorithm is summarized
in Algorithm Box 1.

3. Experiments
We implemented SRST on various domain shift scenarios to
evaluate its performance.

Datasets. The experimental setup included the following
three standard speech datasets. LibriSpeech [16]: This corpus
of read English speech is divided into a training set comprised
of 960 hours of audio, a validation set that contains 5 hours and
a test set with about 5 hours of recordings. WHAM! [17]: This
dataset is a collection of speech recordings mixed with babble
background noise from various urban locations. The speech
recordings come from the WSJ0-2mix dataset and the back-
ground noise was collected at different places such as restau-
rants, cafes, bars, and parks. DNS-Challenge (DNS) [12]: This
dataset is a collection of clean speech recordings mixed with
different types of noise. The dataset includes 64,649 pairs of
clean speech and noise recordings for training and 150 pairs
for testing. We used the LibriSpeech and WHAM! datasets to
create source domain speech and noise and the DNS-Challenge
dataset was used as the target domain. In our experiments, the
target domain was different from the source in terms of both
language and noise types. The language of the source was En-
glish and the languages that were used in the target data were
French, German, Italian, Mandarin, Russian and Spanish.

The domain gap problem: Most previous speech enhance-
ment UDA works focused on the gap between the domain dis-
tributions caused by different noise types [8], [11]. Table 2
presents the gaps between enhancement measures when evalu-
ating the target data with a model trained on the source domain
and with a model trained on the target domain, using English
and non-English speech in the target. The results show that lan-
guage change had a major impact on network performance.

Implementation details: The noisy waveforms were ex-
tracted into time-frequency (T-F) complex features using a 512-
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Table 1: Speech enhancement results on the DNS non-English (target domain) test set (16kHz) with SNR values of -5, 0 and 5.

Method SNR=-5 SNR=0 SNR=5
PESQ STOI SI-SDR (dB) PESQ STOI SI-SDR (dB) PESQ STOI SI-SDR (dB)

Noisy 1.126 0.648 -4.867 1.177 0.714 0.151 1.299 0.823 4.969

Source model 1.325 0.707 3.315 1.443 0.777 8.234 1.872 0.888 12.556

RemixIT [11] 1.364 0.723 5.598 1.496 0.790 9.924 1.919 0.896 14.000
DANN [9] 1.597 0.772 8.762 1.859 0.834 12.857 2.301 0.915 14.951

DANN+ RemixIT 1.557 0.769 9.241 1.750 0.829 12.716 2.221 0.913 15.228
+ SRST (random source) 1.603 0.767 8.999 1.855 0.833 13.006 2.290 0.915 15.237
+ SRST (similar source) 1.616 0.775 9.248 1.861 0.837 13.260 2.317 0.917 15.336

Target model 1.602 0.770 8.972 1.900 0.842 13.170 2.375 0.916 15.118

point Short Time Fourier Transform (STFT) with a Hamming
window and an overlap of 256. The input to the network was the
real and imaginary parts of the T-F maps. The output real and
imaginary maps for both the speech and noise estimates were
reconstructed into the time domain using iSTFT with the same
parameters. We developed and evaluated models that function
with a sampling rate of 16kHz. Throughout all of our experi-
ments, we used U-Net [18] as our encoder-decoder architecture.
The classifier received the U-Net bottleneck as input and con-
tained two convolution layers with a PReLU activation function
followed by the mean over the time domain. Before using it
for domain adaptation, the encoder-decoder was trained in a su-
pervised manner on a set of 50,000 samples from the source
domain, including mixtures generated by speech signals from
LibriSpeech and noises from the WHAM! dataset. The super-
vised loss for the enhancement task was chosen to be the neg-
ative scale-invariant signal to distortion ratio (SI-SDR) [19] for
both the estimated speech and noise:

L(̂s, s) = −SI-SDR(̂s, s) = −20 log10(
∥αs∥

∥αs − ŝ∥ ), (5)

where α = ŝT s/∥s∥2. In the domain-adversarial training phase,
we used a pre-trained domain classifier as initialization to the
adversarial classifier. For the pre-trained classifier training, we
used BCE loss and the Adam optimizer with a learning rate of
10−4, whereas the feature extractor was the frozen pre-trained
encoder from the source supervised training. The loss for the
adversarial training was the weighted sum of the SI-SDR loss
for enhancement and the BCE loss for the domain classification:

L(̂s, s, d̂, d) = −SI-SDR(̂s, s) + β · BCE(d̂, d) (6)

where d an d̂ were the ground truth and estimated domain, re-
spectively and β was set to 0.05. Here we also used Adam
with a learning rate of 10−4. In the self-training stage, we used
teacher inference to create labels for the target domain. For each
mini-batch we selected noisy data from the source and the tar-
get domain. We started with 30% most similar source samples
and then decreased the ratio of source samples in each epoch by
3%.

Compared methods: We compared the quality of
the predicted speech produced by the following methods:
RemixIT [11], DANN [11] and DANN followed by RemixIT
(DANN+RemixIT). We implemented two variants of our SRST
method. In the first, we used 30% of the source samples that
were found to be the most similar to the target domain and

Table 2: Performance of English and non-English DNS test
data. The source model was trained on English LibriSpeech
+ WHAM!. The target model was trained on English and non-
English DNS train dataset.

Test speech Method PESQ STOI SI-SDR (dB)

DNS English

Noisy 1.582 0.915 9.229
Source model 2.320 0.952 15.696
Target model 2.387 0.953 17.207
Gap 0.067 0.010 1.511

DNS non-English

Noisy 1.177 0.714 0.151
Source model 1.443 0.777 8.234
Target model 1.900 0.842 13.170
Gap 0.457 0.065 4.936

in the second we randomly selected 30% of the source sam-
ples. We denote these variants as SRST(similar source) and
SRST(random source). We also report the speech quality of the
input noisy signal, the results of a model trained on the source
data which serves as a lower bound and a model trained on the
target domain using noisy and clean speech which serves as an
oracle upper bound.

Results: Table 1 presents the SI-SDR [19], the short-time
objective intelligibility (STOI) [20] and the perceptual evalua-
tion of speech quality (PESQ) [21] on a separate test set from
the target domain built from non-English languages speech and
DNS noises. The results demonstrate that RemixIT itself was
hardly useful at all in the scenario of a large domain gap, since
it lacks high-quality pseudo-labels for training the student. The
DANN strategy worked well here and yielded improved results.
Adding to the DANN a post-processing step of RemixIT re-
sulted in a slight improvement. The predicted speech of our
SRST method was found to be the best for all the SNR values
on all the speech quality measures. SRST(similar source) was
better than SRST(random source), which indicates that it indeed
helps to exclusively use source samples that resemble the target
domain samples.

To conclude, in this paper, we studied the problem of lan-
guage and noise mismatch in SE systems. We proposed a self-
supervised speech enhancement method, that can successfully
handle large gaps between the source and the target domains.
The experiments showed the superiority of the proposed method
in terms of performance, in an unsupervised speech enhance-
ment domain adaptation. In the future, we aim to generalize
and evaluate our method in a more general setup of noisy speech
separation.
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