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Abstract
Overlapping speech and high room reverberation deteriorate the
accuracy of automatic speech recognition (ASR). This paper
proposes a method for jointly optimum source separation and
dereverberation using delayed subsource multichannel nonneg-
ative matrix factorization (MNMF). We formulate a subsource-
based signal model that accounts for late room reverberation
using time-delayed microphone signals from several past time
frames. We then propose a maximum a posteriori (MaP) esti-
mator based on MNMF with localization prior on the mixing
matrix suitable for direct-path and reverberant signal compo-
nents estimation. Finally, two algorithms are derived, namely
the original and simplified delayed subsource MNMF, which
are shown to outperform many state-of-the-art approaches. The
results of experimental evaluations, performed using real and
simulated data, indicate superior performance of the proposed
processing in terms of the word error rate (WER) as well as
signal-to-distortion ratio (SDR).
Index Terms: source separation, dereverberation, automatic
speech recognition, nonnegative matrix factorization

1. Introduction
Automatic speech recognition (ASR) can achieve tremendous
accuracy on low-reverberant recordings of a single speaker
taken with a close-talk microphone [1, 2]. On the other hand,
speech recorded in real-life conditions is often contaminated by
interfering sounds and reverberation. For robust ASR, it is ad-
vantageous to reduce the detrimental effects of highly overlap-
ping speech and strong room reverberation, for which derever-
beration and source separation can sequentially be performed.

For multichannel dereverberation, a popular approach is
the weighted prediction error (WPE) method [3, 4], while for
source separation (SS), it is common to formulate a probabilis-
tic generative model such as multichannel nonnegative matrix
factorization (MNMF) [5, 6, 7]. The latter proved to be highly
effective in convolutive source separation performed blindly in
unseen acoustic conditions, for which preparation of training
data would be cumbersome. Such a sequential approach, how-
ever, is not optimal, due to mutually-dependent relationships
between the dereverberation and source separation processes.

Recently, some attempts have been made to join WPE-
based multichannel linear prediction with constrained variants
of MNMF [8, 9] in which the spatial model is constrained to be
first-rank [10] or jointly diagonalizable [11], with the aim to re-
duce high degrees of freedom of a full-rank spatial covariance
matrix (SCM) and lower the method’s sensitivity to parame-
ter initialization. One interesting approach to further increase
the reliability of MNMF is to incorporate prior information,
e.g. about the relative source positions, into the probabilistic

framework, which yields the so-called maximum a posteriori
(MaP) estimator [12, 13]. To enhance separation of reverberant
speech, in [14] WPE was followed by MNMF with a localiza-
tion prior. However, apart from suboptimal sequential process-
ing, the method would retrieve the entire reverberant source im-
age and could only cover part of reverberation that falls within
the short-time Fourier transform (STFT) analysis window.

In this paper, we aim to estimate direct-path speech sig-
nals (i.e. separated non-reverberant speech) from multichannel
microphone mixtures with high speech overlap and strong re-
verberation, for improving the effectiveness of back-end ASR.
To this end, we propose a novel delayed subsource MNMF
(DS-MNMF) method which models source spectra using non-
negative tensor factorization (NTF) [6] and models joint late
reverberation components as subsources based on spectral in-
formation inferred from the ‘time-lagged’ microphone signals.
We propose a MaP estimator, designed for direct signal esti-
mation, obtained by carefully selecting the mean and covari-
ance of the localization prior on direct-path and late reverber-
ation subsources. Furthermore, we present the derived update
equations for the resulting expectation-maximization (EM) al-
gorithm, and propose a less computationally complex variant
of the proposed DS-MNMF based on a simplified model. Fi-
nally, an extensive experimental evaluation of the proposed al-
gorithms is performed against state-of-the-art, in simulated and
real rooms, showing significant improvements in terms of word
error rate (WER) and signal-to-distortion ratio (SDR) for vari-
ous reverberation conditions.

2. Proposed Delayed Subsource MNMF
2.1. Signal model

Let us consider an I-channel microphone mixture of J re-
verberant sources, which can be represented within a single
time-frequency bin of the STFT as xfn =

∑J
j=1 y

(j)
fn , where

xfn = [X1,fn, X2,fn, . . . , XI,fn]
T ∈ CI is the microphone

mixture, y(j)
fn = [Y

(j)
1,fn, Y

(j)
2,fn, . . . , Y

(j)
I,fn]

T ∈ CI represents
the spatial image of the j-th source (i.e., source signal as cap-
tured by i = 1, . . . , I microphones), j = 1, . . . , J is the source
index, while f = 1, . . . , F and n = 1, . . . , N denote the fre-
quency bin and time frame indices, respectively.

The complex spectrum of the j-th source S
(j)
fn ∈ C can

be modelled as S(j)
fn ∼ Nc(0, V

(j)
fn ), where V (j)

fn ∈ R+ denotes
the non-negative spectral variance, which can be structured with
the joint NTF model [15], i.e. as

V
(j)
fn =

K∑

k=1

Q
(j)
k WfkHkn, (1)
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where Q
(j)
k = [Q]

(j)
k , Wfk = [W ]fk, Hkn = [Q]kn are the

elements of the respective NTF matrices, and K denotes the
number of NTF components. The columns of matrix W rep-
resent the frequency profiles, the rows of matrix H represent
time activations, while matrix Q maps component k to the j-th
source.

Assuming that the duration of an early part of the room im-
pulse response (RIR) is shorter than the length of the time frame
of the STFT [16], in this paper we propose to model the rever-
berant microphone mixture as a sum of early signal components
d
(j)
fn for J sound sources and a joint late reverberation compo-

nent rfn for all sources, which contains a sum of delayed late
reverberation components from the past time frames. The pro-
posed microphone mixture model is thus given by

xfn =
J∑

j=1

a
(j)
f S

(j)
fn

︸ ︷︷ ︸
d
(j)
fn

+

La∑

τ=δ

cfτXref,f,n−τ

︸ ︷︷ ︸
rfn

+bf , (2)

where a
(j)
f = [A

(j)
1,f , A

(j)
2,f , . . . , A

(j)
I,f ]

T ∈ CI is the time-
invariant transfer function between the j-th source and I mi-
crophones, Xref,f,n−τ denotes the mixture signal at the ref-
erence microphone, cfτ ∈ CI is a time-invariant convolu-
tional transfer function for τ = δ, δ + 1, . . . , La, δ is the de-
lay between the early and late components, whilst La is the
length of the convolutional transfer functions. The noise vector
bf = [B1,f , B2,f , . . . , BI,f ]

T ∈ CI , which follows complex
Gaussian distribution bf ∼ Nc(0,Σb,f ), is used in this work
for the so-called simulated annealing (for details about the an-
nealing procedure please view [5]).

In order to more conveniently formulate (2), we treat J
early source components and L = La − δ delayed late re-
verberation components as M = J + L subsources, and
stack them together in a single subsource vector sfn =

[S
(1)
fn , . . . , S

(J)
fn , (Xref,f,n−δ), . . . , (Xref,f,n−La)]

T ∈ CM .
We can then rewrite (2) in vector notation as

xfn = Afsfn + bf (3)

where Af = [a
(1)
f , . . . ,a

(J)
f , c

(J+1)
f , . . . , c

(J+L)
f ] ∈ CI×M ,

in which for convenience we use the following notation
c
(J+1)
f = cfδ and c

(J+L)
f = cfLa . In sections to fol-

low, we will refer to the transfer function for the m-th sub-
source as [Af ]

(m), i.e. [Af ]
(m) = a

(m)
f for m ≤ J and

[Af ]
(m) = c

(m)
f for m > J .

2.2. Maximum a posteriori estimator

In order to estimate the parameters of the probabilistic model
Θ = {A,Q,W ,H,Σb} with a prior distribution over the
mixing matrix A, we formulate the following posterior in which
X is the observed microphone mixture and the latent data con-
sisting of subsources S. The log-posterior of complete data
{X,S} is given by

logP (Θ|X,S) = logP (X|S,Θ)+logP (S|Θ)+logP (A).
(4)

In order to design a suitable prior over the mixing matrix,
we assume that transfer function for m-th subsource can be
modeled using a complex Gaussian distribution

[Af ]
(m) ∼ Nc(u

(m)
f ,Σ

(m)
f ), (5)

with mean vector u(m)
f ∈ CI and covariance matrix Σ

(m)
f ∈

CI×I . In contrast to state-of-the-art source separation which
adopt the location priors to retrieve reverberant source signals
[12, 13], in this work, our goal is to restore the non-reverberant
source signals. Early source signal components propagate over
the direct path and several early reflection paths between the
source and the microphones, and hence they are primarily con-
centrated in the mean of the prior. On the other hand, late rever-
beration is diffuse in nature and hence it cancels out on average,
whilst it should be taken into account in the covariance of the
‘lagged’ subsources, which can be expressed by

Σ
(m)
f =

{
1
γ
II×I , for m ≤ J,

Ωf , for m > J,
(6)

where γ ∈ R+ is a hyperparameter that controls the strength of
the prior (in this work always set to 1), II×I denotes an iden-
tity matrix, and Ωf ∈ CI×I denotes the spatial coherence ma-
trix [17] whose elements are given by [Ωf ]ii‘ = sinc(κ||pi −
pi′ ||2), where pi and pi’ are the respective microphone posi-
tions and κ denotes the wave number. The mean of the prior is
defined as

u
(m)
f =

{
µ

(j)
f , for m ≤ J,

0I , for m > J,
(7)

where OI is the vector of zeros and µ
(j)
f ∈ CI is the vector with

relative transfer functions of the early parts of the RIRs between
the j-th source and the microphones. In practice, it is often
assumed that the direct propagation path contributes the most,
in which case the steering vector is set based on information
from the localization algorithm, e.g. [18] is used in this work.

Having proposed a suitable prior over the mixing matrix,
we introduce the conditional expectation operator EX|S,Θl [·] to
the negative log-posterior of (4), which yields an auxiliary cost
function Qp(Θ,Θl) to be minimized, which reads

Qp(Θ,Θl)fn =
∑

f,n

Tr
{
Σ−1

b,fn

(
R̂xx,fn − Af R̂

H

xs,fn−

−R̂xs,fnAH
f + Af R̂ss,fnAH

f

)}
+ I

∑

j,f,n

dIS

(
ξ̂
(j)
fn |V

(j)
fn

)
+

+
∑

f,n

log |Σb,f | −
∑

m,f

logNc

(
[Af ]

(m)|u(m)
f ,Σ

(m)
f

)
,

(8)

where Tr{·} denotes the trace operator, dIS(ξ
(j)
fn |V

(j)
fn ) de-

notes the Itakura-Saito divergence [19], and the expectations
of sufficient statistics are given by R̂xx,fn=EX|S,Θl [xfnxH

fn],
R̂xs,fn=EX|S,Θl [xfnsHfn], R̂ss,fn=EX|S,Θl [sfnsHfn], and

ξ̂
(j)
fn = EX|S,Θl [|S(j)

fn |2].

2.3. The proposed DS-MNMF algorithm

The proposed optimization criterion (8) is minimized using an
expectation-maximization algorithm that iterates between the
expectation (E) step, in which the conditional expectation of
sufficient statistics are calculated, and the maximization (M)
step, in which the parameters Θ are updated. Note that deriva-
tions in this work are partially similar to these presented in [6],
[12], [13], therefore, for brevity, only final equations are pro-
vided when possible. Step E consists of the following updates:

R̂xx,fn = AfRss,fnAH
f +Σb,f , (9)
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R̂xs,fn = Rxx,fnGH
s,fn, (10)

R̂ss,fn = Gs,fnRxx,fnGH
s,fn + (IJI −Gs,fnAf )Rss,fn,

(11)
ξ̂
(j)
fn = R̂ss,fn(j, j), (12)

Gs,fn = Rss,fnAH
f R̂

−1

xx,fn. (13)

Contrary to state-of-the-art approaches, we propose to com-
pute matrix Rss,fn using the following update rule

Rss,fn = Γf Σs,fn, (14)

where Γf = diag([Γ(1)
f , . . . ,Γ

(M)
f ]) ∈ RM×M

+ is a diagonal
matrix which contains the attenuation weights for the succes-
sive ‘lagged’ subsources corresponding to the delayed late re-
verberation components, while a diagonal matrix composed of
the variances of all subsources is given by

Σs,fn = diag([V (1)
fn , . . . , V

(J)
fn , |Xref,f,n−δ|2, . . . ,

|Xref,f,n−La |2]).
(15)

Note that (15) follows directly from the definition of sfn in (3)
and that the attenuation weights can be conveniently computed
during the normalization of matrix Af , as described below.

In the M-step, we minimize the cost function (8) over Af ,
which yields the following update rule for the mixing matrix

Af =
[
Σ−1

f +
(
Rss,f ⊗ II

)T ]−1 [
Σ−1

f Uf + Rxs,f

]
, (16)

where the Kronecker product operator is denoted by ⊗, while
the mean and covariance matrices Uf and Σf are given by

Uf = [u
(1)
f ,u

(2)
f , . . . ,u

(M)
f ]T, (17)

Σf =




Σ
(1)
f 0

. . .
0 Σ

(M)
f


 , (18)

Rxs,f =
[
R(1)

xs,f ,R(2)
xs,f , . . . ,R(M)

xs,f

]T
, Rss,f , and R(m)

xs,f are
power normalized matrices given by

Rss,f =
M

∑
nR̂ss,fn

Tr{∑n R̂ss,fn}
, (19)

R(m)
xs,f =

M
∑

nR̂
(m)

xs,fn

Tr{∑n R̂ss,fn}
. (20)

Note that the presented power normalization allows to esti-
mate the spatio-spectral properties without any prior knowledge
about the room or reverberation.

Importantly, normalization of Af involves, firstly, compu-
tation of the attenuation weights according to

Γ
(m)
f =

1

I

I∑

i=1

|A(m)
i,f |2, (21)

and secondly, normalizing each column of Af by its value for
the reference microphone, i.e. as [Af ]

(m) = 1

A
(m)
ref,f

[Af ]
(m).

Finally, the parameters of the NTF model are updated using
multiplicative update rules given by

Q
(j)
k ←− Q

(j)
k

∑
fn WfkHknξ̂

(j)
fn (V

(j)
fn )−2

∑
fn WfkHkn(V

(j)
fn )−1

, (22)

Wfk ←−Wfk

∑
jn HknQ

(j)
k ξ̂

(j)
fn (V

(j)
fn )−2

∑
jn HknQ

(j)
k (V

(j)
fn )−1

, (23)

Hkn ←− Hkn

∑
jf WfkQ

(j)
k ξ̂

(j)
fn (V

(j)
fn )−2

∑
jf WfkQ

(j)
k (V

(j)
fn )−1

, (24)

which ought to be computed interchangeably several times per
iteration. In order to avoid scale, phase and permutation inde-
terminacy, matrices Q,W , and H are normalized following
the procedure described in detail in [5]. As a result, all time-
dependent amplitude information is relegated to matrix H .

The noise matrix Σb is updated using simulated annealing
with the aim to accelerate algorithm convergence and reduce the
likelihood of getting stuck at local minima (see [5] for details).

Finally, based on the estimated spatial and spectro-temporal
information, extraction of the separated non-reverberant source
signals is achieved using the convolutional weighted parametric
multichannel Wiener filter recently presented in [20].

2.4. SDS-MNMF algorithm with a simplified signal model

In order to reduce the computational complexity of DS-MNMF
that rises exponentially with an increasing source number J and
late reverberation delay L, we propose a simplified version of
the proposed algorithm, referred hereafter as SDS-MNMF, in
which we simplify the signal model (2) to obtain

xfn =
J∑

j=1

a
(j)
f S

(j)
fn + cf

La∑

τ=δ

Γf,τXref,f,n−τ + bf . (25)

Note that in (25), there is only a single ‘resultant’ transfer func-
tion cf , while the attenuation weights for subsequent time lags
Γf,τ are included in the model. Such a simplification results in
lowering the overall number of subsources from M = J + L
to M = J + 1. The mixing matrix then becomes Af =

[(a
(1)
f )T , . . . , (a

(J)
f )T , cTf ]

T ∈ CI×(J+1) and (14) changes to

Rss,fn = diag([V (1)
fn , . . . , V

(j)
fn ,

La∑

τ=δ

Γf,τ |Xref,f,n−τ |2]),

(26)
while other update equations from Sec. 2.3 remain unchanged,
apart from (21), and hence this algorithm requires prior estima-
tion of the attenuation matrix Γf . In experimental evaluation
presented in this paper, in order to obtain Γf without additional
prior knowledge on room acoustics, we run 10 iterations of the
basic DS-MNMF algorithm, and then run the SDS-MNMF al-
gorithm with fixed Γf values.

3. Experimental Evaluation
The evaluation dataset consisted of two-channel reverberant
mixtures with highly overlapping speech, obtained by con-
voloving clean speech signals of J = 2 with the respective
room impulse responses (RIRs) between the sources and I = 2
microphones. As clean signals, 2620 speech utterances from
the Librispeech test-clean [22] part were used, such that each
of 1310 mixtures contained the signals of two different speak-
ers of a similar length. The RIRs were either taken from the
REVERB challenge [23] with rooms denoted as small, medium
and large or simulated via the image-source method [24] with
60 dB reverberation times (RT60) of 300, 600, and 900ms.
Signals were sampled at 16 kHz and processed with 512 point
STFT with 50% overlap. As evaluation metrics, the word error
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Table 1: Word error rate (WER) [%] and signal-to-distortion ratio (SDR) results for various reverberation conditions in simulated and
real rooms obtained for the two proposed and a number of state-of-the-art source separation algorithms, also with WPE preprocessing.

RIR type Simulated with Image Source Method Real from REVERB Challenge
RT60 [ms] / Room 300 600 900 small medium large
Measure WER SDR WER SDR WER SDR WER SDR WER SDR WER SDR

microphone mixture 105.10 -0.5 106.36 -2.0 106.92 -3.4 103.01 -0.2 102.63 -1.4 103.86 -2.3
single source with reverberation 2.78 11.8 4.45 5.4 11.56 2.2 2.48 15.6 2.94 7.5 9.81 4.7

GEM-MU [15] 86.11 2.4 90.62 -0.1 94.13 -2.3 86.9 3.2 94.83 1.8 96.21 1.3
Fast-MNMF [21] 87.09 2.4 102.52 -0.5 107.99 -2.3 66.65 2.8 85.87 0.3 92.11 -0.9
WPE [4] + GEM-MU [15] 53.94 6.7 63.06 4.7 79.50 2.7 83.71 3.3 91.50 2.0 92.33 1.5
WPE [4] + Fast-MNMF [21] 77.44 2.2 93.11 0.6 103.33 -0.9 61.45 2.6 74.71 1.7 82.20 1.2
DS-MNMF with L = 0 (no reverb) 13.21 9.9 32.81 6.2 50.41 3.2 20.24 7.7 33.22 5.0 37.56 3.9
WPE + DS-MNMF with L = 0 10.67 10.2 28.02 7.0 46.65 4.0 19.71 7.3 32.31 5.6 37.79 4.5
Proposed DS-MNMF 9.40 11.1 25.07 7.7 43.02 5.2 19.09 7.9 31.27 6.2 35.72 5.2
Proposed SDS-MNMF 9.34 11.1 25.44 7.6 44.09 5.1 18.65 7.8 30.40 6.0 35.61 5.0

Table 2: Word error rate (WER) [%] results for a different num-
ber of delayed late reverberation subsources, for the proposed
original (DS-MNMF) and simplified (SDS-MNMF) algorithms.

RT60 [ms] 300 600 900

DS-MNMF

L = 0 13.21 32.81 50.41
L = 2 10.20 27.48 45.47
L = 4 9.40 25.07 43.02
L = 6 9.23 25.28 43.66

SDS-MNMF

L = 0 13.21 32.81 50.41
L = 2 10.20 27.29 45.47
L = 4 9.34 25.44 44.09
L = 6 9.33 25.95 44.49

rate (WER) was used to assess the performance of the ASR on
the separated signals and the Signal-to-Distortion Ratio (SDR)
to assess the quality of source separation and dereverberation,
respectively. In the ASR task, we used the pretrained asr-
transformer-transformerlm model [25] from the SpeechBrain
toolkit [26] with the beam size of 10 and CTC weight set as
0.52 during tests.

3.1. Results of experiments and discussion

In the first experiment, we aim to verify the influence of the
number of delayed subsources L on the performance of the two
proposed algorithms, namely of the original DS-MNMF and the
simplified SDS-MNMF, in various reverberation levels. The
WER results presented in Table 2 for the simulated RIRs in-
dicate that the performance of both algorithms improves for an
increasing number of ‘time-lags’ that model late reverberation,
with a significant improvement observed for L > 2, and reach-
ing an optimum value of L = 4 for the considered reverberation
levels and the STFT frame size. Note that the simplified algo-
rithm achieves nearly similar gains as the original algorithm,
while it provides faster performance due to the smaller sizes of
the mixing and subsource covariance matrices.

In the second experiment, we compare the proposed algo-
rithms against popular state-of-the-art separation methods on
datasets with real and simulated RIRs. As the main reference
(baseline) algorithm, we used the generalized EM algorithm
with multiplicative updates (GEM-MU) [15], which is similar
in structure to the proposed algorithm, but without the localiza-
tion prior and additional, ‘lagged’ subsources that model late
reverberation. As a second reference algorithm, a popular Fast-
MNMF [21] was used. Both methods were also tested in se-
quence with the generalized WPE [4] method, a popular ap-
proach to perform multichannel dereverberation prior to other

speech enhancement and separation tasks. Dereverberation fol-
lowed by separation is then denoted as WPE + GEM-MU and
WPE + Fast-MNMF, respectively, and for the WPE preprocess-
ing parameter L was selected according to the formula pre-
sented in [27] for optimum dereverberation, which results in
L = 8, 15, 30 for RT60 = 300, 600 and 900 ms, respectively.
Apart from the two proposed algorithms, in which we set L = 4
as concluded from the first experiment, we also present the re-
sults of the DS-MNMF with the localization prior but without
any ‘time-lags’ for modelling late reverberation, which is per-
formed on signals dereverberated with WPE preprocessing. For
reference, we also present the results obtained for the rever-
berant mixture (without any separation or dereverberation per-
formed) as well as for the reverberant speech of a single speaker.

The results of the second experiment in terms of WER and
SDR values are presented in Table 1. As can be observed from
the first two rows, performing ASR on microphone mixtures
turns out to be a formidable task, while reverberation alone has
a negative yet minor effect on the overall metric values. Impor-
tantly, both reference algorithms struggle to converge in most
cases, which results in high WER and low SDR results. Al-
though WPE preprocessing can help to mitigate the negative
effect of reverberation, a non-optimum sequential processing
seems insufficient for the joint separation and dereverberation
task. In contrast, the proposed algorithm is jointly optimum,
and hence it yields the best results by a high margin. Interest-
ingly, incorporation of the localization prior seems to make a
significant performance boost, while the simplified algorithm
performs almost equally well as the original DS-MNMF.

4. Conclusions
This paper presents a novel MNMF algorithm for joint sepa-
ration and dereverberation in which late reverberation compo-
nents are modelled with delayed subsources using past time
frames. Experimental evaluations show that both proposed al-
gorithms outperform state-of-the-art methods in the joint task.
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