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Abstract
Recent advancement in Automatic Speech Recognition (ASR)
has produced large AI models, which become impractical for
deployment in mobile devices. Model quantization is effective
to produce compressed general-purpose models, however such
models may only be deployed to a restricted sub-domain of in-
terest. We show that ASR models can be personalized during
quantization while relying on just a small set of unlabelled sam-
ples from the target domain. To this end, we propose myQASR,
a mixed-precision quantization method that generates tailored
quantization schemes for diverse users under any memory re-
quirement with no fine-tuning. myQASR automatically evalu-
ates the quantization sensitivity of network layers by analysing
the full-precision activation values. We are then able to gener-
ate a personalised mixed-precision quantization scheme for any
pre-determined memory budget. Results for large-scale ASR
models show how myQASR improves performance for specific
genders, languages, and speakers.
Index Terms: ASR, Compression, Quantization, Transformers.

1. Introduction
Automatic Speech Recognition (ASR) models improve user ex-
perience when interacting with mobile devices while widening
the accessibility of such technologies [1, 2]. Recent innovation
in ASR has focused on large and multi-purpose (e.g., multi-
lingual) transformer-based architectures [3, 4]. However, there
has been less consideration for how these models can be effec-
tively compressed and deployed for a diverse range of users and
devices, whilst preserving privacy (i.e., with anonymized data).

Model quantization can be divided into three categories
[5, 6]: i) Quantization Aware Training (QAT) where the quan-
tized model is fine-tuned on labelled data to recover accuracy
[7, 8, 9, 10, 11, 12, 13], ii) Post-Training Quantization (PTQ)
where labelled data is used to calibrate quantization parameters
without training [14, 15, 16], and iii) Data-Free PTQ (DF-PTQ)
where data is unlabelled (i.e., label-free) or not available at all
[17, 18]. We focus on label-free PTQ. DF-PTQ has been tack-
led in the computer vision (CV) domain via layerwise knowl-
edge distillation (KD) between original and quantized layers for
compressing CNNs [19, 20, 21]. These methods have been ex-
tended to Transformers for both vision [22, 23, 24] and ASR
[11, 25, 26, 27], adjusting for GELU and multi-headed atten-
tion. In a deployed scenario, computational and time expensive
KD methods are not practical as a copy of the full precision
(FP) network is required. When unlabelled data is available, a
few methods [14, 28] proposed to minimize distance between
both quantized and FP weights and activations, or to minimize
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Figure 1: Overview of myQASR. A large model is quantized
according to users’ audio data and their device storage budget.

a task loss with respect to the quantization parameters. While
these methods are promising in CV [28], their effectiveness has
not been explored in ASR. More recently, some data-free meth-
ods use statistics of input data to generate synthetic data used
to fine-tune quantized models [29, 30]; however, these methods
cannot account for out-of-domain data which occur in deploy-
ment setups and require further training. In [31], this problem
is approached via a diverse sample generation scheme; how-
ever, the method still requires fine-tuning on synthetic data, is
sensitive to hyper-parameters controlling the skew of sample
distributions, and has not been applied to ASR tasks.

Another desirable property of personalized compressed
ASR models, is the ability to set any target model size while
preserving accuracy. Mixed precision (MP) quantization, where
each layer is quantized to a different bit depth, allows the tar-
get model size to be controlled. Second-order information [32],
NAS [33], and generative methods [34] are effective for low-bit
MP settings in CV, but they either require multiple models to
be stored in memory concurrently [33], or computationally ex-
pensive sensitivity detection [32, 34]. Current MP methods also
require several hyper-parameters to search optimum bit-depth
combinations or to set the min/max bit depths, which does not
permit for fine-grained interpolation between model sizes since
extreme values are set a priori and layer size is not considered.

To address these problems, we present myQASR, a system
for personalized compression of ASR models, which performs
fast layer-wise sensitivity detection to identify MP bit depths for
a range of models (e.g., large multi-purpose transformer mod-
els), user traits, and memory constraints. The scenario targeted
by myQASR is depicted in Fig. 1, where a general-purpose FP
ASR model is quantized for user k ∈ [K] given a small dataset
of unlabelled private user samples Uk and target storage bud-
get in MB, Bk. Using Uk, we find a good approximation of
weight sensitivity to quantization by observing the median val-
ues of FP activations. Our approach is motivated by the ac-
tivation change among different users (e.g., male and female
in Fig. 2): as such, models for different users require differ-
ent quantization schemes to find a better compression-accuracy
trade-off. We then experiment with some calibration methods
to find the optimum scale and zero-point for the quantization
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function given the selected bit depths and statistics of data.
We report experimental validation on recent state-of-the-

art architectures (e.g., Wav2Vec2 [3] and Whisper [4]) with
data segmented according to certain properties (i.e., gender, lan-
guage, and speaker identity) to demonstrate how our personal-
ized model compression performs over a heterogeneous target.

To summarize, the main contributions of our work are: 1)
We introduce myQASR: to our knowledge, the first method for
personalized PTQ of ASR models. Our method requires only a
few unlabelled user samples to adjust the quantization parame-
ters without any fine-tuning. 2) myQASR breaks the common
assumption of setting a minimum and a maximum value for the
bit depth, and, instead, it relies on a uniformity constraint to
guide the quantization process. 3) The uniformity constraint
evaluates layer sensitivity in linear time complexity to identify
candidate layers that can be further quantized to meet any prede-
fined memory budget constraint to the nearest KB. 4) myQASR
is the first ASR quantization approach that quantizes all parts
of the network and supports integer bit shifting operations for
matrix multiplication to ease on-device deployment.

2. Method
For simplicity, we drop the target user index k. Given a network
pre-trained on a dataset composed of multiple data subsets and
parametrized by W = {Wl}Ll=1 with l ∈ [L] layers in the
network, we aim to quantize the network to meet any storage
budget B minimizing the error rate for a specific target subset
U , of which only a few unlabeled samples are available, with
|U| ≤ 32 in our experiments. myQASR can be employed in two
stages: 1) layer-wise sensitivity detection - where we perform
inference on U and collect statistics of the raw model, and 2)
calibration, where we adjust network parameters based on U .
Sensitivity Detection. To select MP bit-depths b ∈ ZL

+, we
compute outputs of each Conv and Linear layer1 (e.g., by in-
serting observers). We run inference over the unlabeled tar-
get dataset U storing the median values of output activations,
a ∈ RL

+, such that al ≜ a[l] is the median of outputs obtained
at the l-th layer ol. We empirically observed a positive correla-
tion between the median of activations and quantization error of
the layer with respect to the input samples. As shown in [35],
at low bit-depths, uniform distribution of weights can reduce
quantization error, thus the median measures distribution skew
at FP which relates to quantization sensitivity. Then, we pro-
ceed to select the bit depths b according to the memory budget
B, as described in Alg. 1, where |Wl| counts parameters of ol.

myQASR performs inference only once with a small num-
ber of samples to select the MP scheme, making our method
more memory and computationally efficient than distance- or
loss- based metrics, such as [32, 36, 14, 22]. Once inference
is performed, we take the absolute of median values from each
layer (to measure how much they differ from 0 regardless of
their sign) and search for the quantization scheme by reducing
each layer by one bit until the budget is reached while retain-
ing the highest degree of uniformity among bit depths between
layers. This uniformity constraint during the sensitivity detec-
tion enables removal of any additional hyper-parameters that are
required by other methods [37, 38, 23, 34] which set a priori
range of bit widths for compression, i.e., min(b) and max(b)
denoting the minimum and maximum valued bits in b.
Quantization & Calibration. Once we have obtained the op-
timum bit depth, we proceed with quantization. For each layer,

1Self-attention weights (i.e., Queries, Keys, and Values) are consid-
ered separately, so they are quantized individually depending on budget.
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Figure 2: Distribution of activations from the first convolution
layer of Wav2Vec2 on female (F) and male (M) data.

Algorithm 1: Sensitivity detection of myQASR.
Data: B memory budget in MB, M model size in MB

(M > B), andW model parameters.
Result: Array b of selected bit depths.
b← {32, . . . , 32} // initialize to FP.
Compute median activations a over U (al,∀l ∈ [L]);
q̂← argsort(a) // get sorted list of layer indices.
while M > B do

for l in q̂ do
bl −=1 // reduce l-th layer bit depth by one.
M = ComputeModelSize(b,W)
if M <= B then return bit depth array b ;

def ComputeModelSize(b,W):
∀(bl,Wl) in (b,W): qParams += (bl / 8)× |Wl|

return qParams / 10242 // model size in MB.

we quantize both weights, Wl, and inputs, Xl, using a quantiza-
tion function Q(θl, bl) where θl ∈ {Wl, Xl}. The objective is
to restrict the FP values of θl to finite integer values by scaling
and rounding, as defined by

Q(θl, bl) = [round(θl/Sl)− Zl]bl , (1)

where round(·) is the integer rounding operation, Zl corrects
the zero point of the quantized output, [·]bl is the representation
of · with bl bits, and Sl is the scaling factor.

In standard uniform quantization [5], Sl is defined by the
maximum available values given by bl, i.e., Sl = 2bl−1. Uni-
form quantization function Q(θl, bl) is directly applicable for
quantization of weights Wl, as they follow a Gaussian distribu-
tion. However, activations do not [35] (Fig. 2), so there may
exist Sl values which can minimize the quantization error more
effectively. We employ three methods to find appropriate Sl to
scale activations, which we describe next.

1) The first method, called myQASR, inserts observers in
the network to track the layer-wise minimum (Xm

l ) and maxi-
mum (XM

l ) values of the input tensors at FP. The layer scale Sl

and zero point Zl for the input tensor are then obtained by

Sl = (XM
l −Xm

l )/(2bl−1), (2)

Zl = −2bl−1 − round(Xm
l /Sl). (3)

We also experiment with other Sl, by minimizing the dis-
tance between quantized and FP output of layers as described
in [39, 14]. In this setting, we define a range of possible
values for Sl defined by the minimum and maximum values
given by bl, and then take the distance between the FP out-
put (i.e., output vector ol) and quantized output (ôl) where
ôl = Q(Wl, bl)

TQ(ol−1, bl). In ablation studies, we evaluate
a number of distance metrics for this calibration stage and find
that the cosine distance is the most effective.

2) The second method (called myQASR-Hess) is driven by
the recent observations [22] where quantization of GELU and
softmax outputs benefits from asymetric non-uniform quantiza-
tion schemes due to their non-Gaussian distribution. In [22],
the authors utilise two quantization ranges per layer, Rl

1 and Rl
2

with scaling factors SRl
1

and SRl
2
, where Rl

1 = [−2k−1SRl
1
, 0]
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and Rl
2 = [0,−2k−1SRl

2
] for post-GELU activations. Finding

the optimum SRl
1

and SRl
2

can be performed via a linear search
where the objective is to minimize the distance between quan-
tized and FP output of each layer scaled by its impact on the
task loss L(ŷ, y). Denoting ∆l = ôl − ol, the Hessian-based
calibration optimization for layer l is defined by

min
S
Rl

1
,S

Rl
2

EU


∆T

l diag

[(
∂LU
∂oi

)2
]L

i=1

∆l


 . (4)

3) The third method (myQASR-Cosine) calibrates the
model minimizing the cosine distance by

min
S
Rl

1
,S

Rl
2

EU

[
ôl · ol

∥ôl∥ · ∥ol∥

]
. (5)

As we will see, myQASR-Cosine provides the best results
for personalized quantization at the cost of a remarked increase
in calibration time and memory consumption which may not be
available in certain deployment scenarios.

3. Experimental Analyses
Datasets. We employ 3 datasets, one for each personalization
task. To demonstrate our method, we partition data into sub-
sets. However, myQASR requires no a priori assumption on
data split. We replicate a deployment scenario, where myQASR
sees only a small amount of unlabelled target data from a user.
1) Gender-wise Personalization. LibriSpeech (LS) [40] con-
tains ∼ 1k hours of 16kHz English speech derived from audio-
books. We perform experiments on test-clean, creating Male
(M) and Female (F) partitions, splitting audio data by speaker
gender. 2) Language-wise Personalization. FLEURS [41] con-
tains 102 languages, each with∼ 12 hours of speech. We select
10 among the top performing languages for the Whisper archi-
tecture. For each experiment, we randomly sample 32 full spo-
ken sentences for calibration. 3) Speaker-wise Personalization.
Google Speech Commands (GSC) [42] is designed to evaluate
effectiveness of keyword spotting models. The dataset contains
one second long audio files from multiple speakers. We use the
test partition v0.01, which contains 3081 spoken words. For
calibration, we select 5 words from each speaker and test per-
formance on all the available test data per speaker.
Models. We use Wav2Vec2 (W2V2) [3] and Whisper [4] to
evaluate our method. For all models, we quantize all weights
and activations. On LS, we use a pre-trained W2V2 base (B)
model fine-tuned on 960 hours of clean English audio data from
LS. For Keywords Spotting (KWS), we use a W2V2-Large-
Conformer (W2V2-L-C), as described in [43], pre-trained on
GSC. Whisper [4] is a multi-lingual sequence to sequence (en-
coder/decoder) Transformer model pre-trained on 680K hours
of multi-lingual supervised audio data. We experiment on the
Whisper-L, i.e., the large variant. We use Word/Character Error
Rate (WER/CER) for ASR tasks, and we use accuracy (ACC)
for KWS. Average bit depth is denoted by b̄.
Main Results on Gender. Fig. 3 shows WER of W2V2-B pre-
trained on multi-gender data, quantized for a female user and
tested on LS-F. The plot spans an increasing memory budget
from 60MB (i.e., b̄ ≈ 5) to 90MB (i.e., b̄ ≈ 8). Original
(i.e., FP, non-quantized) model performance indicates the lower
bound for WER (gray dashed line). Uniform quantization yields
competitive results, however cannot meet fine-grained mem-
ory requirements. Our simplest myQASR calibrated on female
data, myQASR (F), improves accuracy and can meet any de-
sired target model size. We argue on the usefulness of our sen-
sitivity method since: myQASR (F) shows significant benefits
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Figure 3: WER of W2V2-B on LS-F. Original model is 360MB.
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Figure 5: KWS ACC on GSC with myQASR-W2V2-L-C.

compared to myQASR (M), i.e., quantizing the model accord-
ing to male data; myQASR (F) outperforms its shuffled (i.e., bit-
depths shuffled) or reversed (i.e., bit-depths reversed) versions
by large margin. Cosine-based calibration brings large benefits,
reducing the gap from the FP model. Nonetheless, calibration
on female data still outperforms calibration on male data.

Main Results on Language. In Fig. 4, we show personalized
compression in multi-lingual settings. We take the pre-trained
multi-lingual Whisper-L model and calibrate bit-depths and ac-
tivation ranges using just 32 samples of unlabelled data. Each
language label represents a tune and test split, and we show
that calibrating bit depths and activations for the same language
leads to improved results. Although we obtain better results on
the same language used for calibration (on-diagonal results), we
remark that the resulting model still achieves competitive results
on other languages (off-diagonal results); thus being able to pre-
dict also on such languages. In the worst case (i.e., Russian),
our method is outperformed by calibration on other languages.
However, it shows a relative gain of 0.9% compared to the aver-
age of other-language results. In the best case (i.e., Catalan), our
method outperforms the average of other-language by 10.9%
relative gain. On average, our same-language myQASR yields
66.2% better results than standard uniform quantization with
no calibration (12.5% vs. 36.9% WER), and 4.2% better results
than other-language quantization (13.0% WER).

Main Results on Speaker. In Fig. 5, we show ACC for our
myQASR applied to a W2V2-L-C [43] compressed from 2.4GB
to 375MB (i.e., b̄ = 5bits). We partition GSC by speaker ID
and evaluate on each ID with calibration data from different
speakers. We show that, when sensitivity and calibration anal-
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Table 1: Ablation on min-max (mm) MP bit depths selection. Size: in MB and min-max values within brackets (min-max), my: myQASR.
size WERmm WERmy size WERmm WERmy size WERmm WERmy size WERmm WERmy size WERmm WERmy size WERmm WERmy

M 82.5 (5-7) 6.6 4.7 87.7 (6-7) 5.6 4.3 81.9 (4-8) 6.9 6.6 87.5 (5-8) 6.4 4.3 93.2 (6-8) 5.4 4.1 98.4 (7-8) 4.2 4.2
F 82.3 (5-7) 7.4 5.3 97.7 (6-7) 5.5 4.9 82.1(4-8) 7.1 6.2 87.5 (5-8) 7.0 4.9 93.0 (6-8) 5.3 4.7 98.2 (7-8) 4.6 4.6

ysis is performed on the same speaker, we achieve optimum
performance. For example, in the best case (i.e., speaker #7),
we achieve 100% ACC when compression is personalized for
that speaker, compared with 40% ACC when personalized for
another speaker from the same dataset, even though keywords
are the same. On average, our same-speaker myQASR yields
17.5% higher results than standard uniform quantization with
no calibration (92.3% vs. 78.6% ACC), and 19.6% higher re-
sults than other-speaker quantization (77.2% ACC).

4. Ablation Study
Ablation is performed on W2V2-B compressed via myQASR-
Cosine to 75MB, i.e b̄ = 6.5, (unless otherwise stated) on gen-
der data calibrated and tested on the same split.
Bit Depth Selection & Uniformity Constraint. Tab. 1 shows
a comparison between our uniform constraint and the common
min-max method [32, 34], where min-max values are chosen for
depths according to a linear interpolation mapping highest (low-
est) activation value to the min (max) bit depth. This approach
leads to significantly lower results at fixed target compression
ratios than ours. This shows the advantage of enforcing some
uniformity among layers in the network. Using min-max bit
depths also requires two more hyper-parameters that we avoid
thanks to the sensitivity evaluation scheme, as discussed next.
Sensitivity is evaluated in Tab. 2. We grouped methods as
reduction-based or distance-based. Reduction-based methods
compute an aggregate measure of the distribution of activa-
tions obtained using the original model, namely: average, me-
dian (ours), max, max of the absolute and standard deviation.
Distance-based methods compute a distance measure between
layer-wise activations obtained using the quantized and origi-
nal model, namely: L1, L2, Spectral norm, Frobenius norm,
and KL divergence. As in the reduction setting, the values are
sorted in order of increasing distance and then used to assign bit
depths per layer. Reduction-based methods are more practical
than distance-based ones as they do not require both the quan-
tized and original model, and can achieve performance compa-
rable to distance-based methods. Among reduction-based ap-
proaches, median provides the best results. We reason that the
median provides a measure of distribution skew at FP which
correlates with quantization sensitivity as described in [35].
Calibration is evaluated in Tab. 3. To evaluate it, we use a
number of distance functions which compute the quantization
error between FP and quantized activations. For each metric,
apart from myQASR variations, we generate t possible quanti-
zation scales per each layer and minimize the error defined by
the distance metric (t = 100, as in [22]). Cosine and Hessian
weighted myQASR perform the best but have a high computa-
tional search time. L1 achieves competitive results, however its
WER is outperformed by myQASR-Hess with a similar calibra-
tion time. myQASR, which performs a simple min/max calibra-
tion as described in Sec. 2, provides a trade-off between accu-
racy and computational time, and does not require linear search
or any additional hyper-parameters as the other methods.

We study the amount of unlabelled target data needed in
Tab. 4 and verify that a few samples are sufficient for calibra-
tion, as reported in [44]. For robustness, we choose 32 samples,
since variability of results is minimized (i.e., low standard de-

Table 2: Ablation on the sensitivity scheme. We take only the
measures used in compared methods for a fair comparison.

Reduction Male Female Distance Male Female

WER CER WER CER WER CER WER CER

Avg 7.5 2.4 7.3 2.3 L1 [22] 7.3 2.3 7.2 2.2
Median (ours) 6.6 2.1 7.1 2.2 L2 [22] 7.2 2.2 7.2 2.2
Max 7.1 2.2 7.8 2.4 SN [14] 7.3 2.3 7.3 2.2
Max Abs 7.2 2.3 8.4 2.7 Frob [36] 7.3 2.3 7.2 2.2
Std 7.5 2.4 7.4 2.3 KL [22] 7.3 2.3 8.4 2.7

Table 3: Ablation on the calibration scheme. Time (sec) mea-
sures calibration procedure only.

Male Female

WER CER Time WER CER Time

None 87.5 67.2 0 66.2 83.0 0
L1 [22] 8.2 2.7 158 9.8 2.8 147
L2 [22] 63.7 3.4 155 57.5 29.4 156
LinW L2 [22] 89.5 62.9 154 92.2 70.2 155
SqW L2 [22] 94.7 81.0 154 97.1 82.9 155
myQASR 28.8 28.7 7 22.7 22.6 7
myQASR-Hess 7.9 2.5 161 7.9 2.4 154
myQASR-Cosine 6.6 2.1 172 7.1 2.2 171

Table 4: Ablation on |U|, results averaged over 5 seeds.

|U| 4 8 16 32 64 128

WER (M) 6.1±2.0 7.0±0.4 6.9±0.8 6.6±0.1 8.4±0.8 8.5±1.4
WER (F) 7.1±1.6 7.0±1.0 6.6±1.0 7.1±0.2 6.9±0.8 6.8±0.5

Table 5: Ablation on activation quantization.

Male Female

Act bits 4 6 8 10 12 16 32 4 6 8 10 12 16 32
WER 69.0 8.1 6.6 7.0 7.0 7.1 7.1 70.0 8.5 7.1 7.5 7.4 7.4 7.4
CER 34.7 2.7 2.2 2.2 2.2 2.1 2.1 3.6 2.7 1.9 2.3 2.3 2.3 2.3

viation). Similarly, we perform personalized compression via 5
samples for speakers and 32 for languages.
Activation quantization is evaluated in Tab. 5 (also weights are
quantized). As expected, we observe performance improve-
ments when quantization decreases. We select 8-bit quantiza-
tion following previous approaches [36] and verify that it repre-
sents a good trade-off between compression and accuracy. We
note how female-specific models are more sensitive to quanti-
zation which is a reflection of an original bias of the FP model.

5. Conclusions
We introduced a new task of personalized model quantization
to bring large ASR transformers on low-resource devices such
as mobile and edge devices with performance targeted for the
final end user. To address this, we propose myQASR, a versa-
tile personalized quantization scheme to compress large ASR
models to any memory budget. myQASR couples a unifor-
mity constraint to evaluate layer sensitivity with optional Hes-
sian guidance to set quantization scaling parameters. It requires
only a few user-specific unlabelled samples to drive the quan-
tization process personalizing the model performance with no
fine-tuning. Our work provides a baseline for future research in
personalized compression focusing on greater accessibility and
performance for diverse users and devices.
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