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Abstract
Recent studies have shown that using an external Language
Model (LM) benefits the end-to-end Automatic Speech Recog-
nition (ASR). However, predicting tokens that appear less fre-
quently in the training set is still quite challenging. The long-
tail prediction problems have been widely studied in many ap-
plications, but only been addressed by a few studies for ASR
and LMs. In this paper, we propose a new memory augmented
lookup dictionary based Transformer architecture for LM. The
newly introduced lookup dictionary incorporates rich contex-
tual information in training set, which is vital to correctly pre-
dict long-tail tokens. With intensive experiments on Chinese
and English data sets, our proposed method is proved to out-
perform the baseline Transformer LM by a great margin on
both word/character error rate and tail tokens error rate. This
is achieved without impact on the decoding efficiency. Over-
all, we demonstrate the effectiveness of our proposed method in
boosting the ASR decoding performance, especially for long-
tail tokens.
Index Terms: Automatic speech recognition, Language mod-
eling, rare words recognition, long-tail recognition.

1. Introduction
While a lot of studies have demonstrated the superiority of end-
to-end (E2E) Automatic Speech Recognition (ASR) systems
[1, 2] and the effectiveness of incorporating Language Models
(LM) into the E2E ASR systems[3, 4], recognition and predic-
tion of words that appear only a few or zero times in training
data are still big challenges, especially for E2E ASR systems
which are optimized only on text in the training data.

Some studies have addressed this long-tail problem for E2E
ASR [5, 6, 7, 8, 9, 10, 11]. The studies in [6, 9] resort to adding
large corpora of textual data or adjusting the distribution of head
and tail words in LM training to improve the modeling ability
of tail words. In [7, 8], the authors proposed to improve the
prediction of tail words with the help of large-scale pretrained
LMs (BERT[12] variants) which inevitably increases the de-
coding computational cost. Another line of research modified
the training loss or introduced extra loss terms to regularize
the ASR training, and results showed improved performance
on rare words [5, 11]. In [10], the authors tried to scale up the
embedding capacity of an RNN LM by incorporating N-gram
context embedding into the embedding layer without sacrific-
ing decoding efficiency. However, it ignored the frequency in-
formation of words and N-grams and only reply on the input
embedding layer to learn enough contextual information to pre-
dict rare words.

Since Transformer LMs have shown better performance
than RNN LMs for ASR [13], in this paper we extend the Trans-

former LMs with a lookup dictionary that maps the current con-
text to candidate tokens that have occurred during training. In-
spired by [14] which focuses on effective training of BERT, we
initialize a dictionary by aggregating the N-gram token IDs of
the current token as keys and utilize a multi-vector array as val-
ues to enable memorization of rich context information. We
now consider the dictionary’s values as the memory of the cor-
responding N-gram context. Specifically, the contextual mem-
ory is updated by the current token’s subsequent token embed-
ding in the training based on how often the subsequent token
occurs in the training corpus. For each key, the frequency of the
subsequent token decides how many vectors in the correspond-
ing multi-vector value will be updated. We then use an attention
module at the last layer of the transformer blocks to map the dic-
tionary memory to the contextualized embedding of the current
token, in which the current context will query the most relevant
vectors from the corresponding multi-vector memory.

We experimented on two Mandarin ASR data sets and im-
prove 8.5% relatively of the Character Error Rate (CER) over
the baseline Transformer LM. Notably, our method show 13%
and 12.5% relative CER reduction on the 1-gram and 2-gram
tail tokens. Also, we achieve Word Error Rate (WER) improve-
ment on the two test sets of LibriSpeech. The results indicate
the success of our method on improving not only the general
ASR decoding but also the prediction of tail tokens for both
Mandarin and English. We did intensive analysis to investigate
the benefits of different aspects of our proposed method. Over-
all, this paper makes several contributions as the following:

1. We propose a new Transformer based LM for ASR equipped
with a lookup dictionary consisting of multi-vector memory
that builds bonding between the current context and to-be-
predicted candidate tokens.

2. We incorporate the N-gram context information and the to-
ken frequency in training data into the lookup dictionary to
improve the prediction of rare words.

3. Our proposed LM significantly outperforms the baseline LM
in both Mandarin and English ASR while keeping the same
inference efficiency.

2. Proposed approach
In Figure 1, we show the diagram of the Transformer LM
equipped with our proposed memory augmented lookup dictio-
nary. Each module will be introduced separately in the follow-
ing subsections.

2.1. Dictionary Construction and Indexing

We initialize the dictionary as DDD ∈ RU×M×demb , where demb

is the embedding size and U is the dictionary size. Instead of
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Figure 1: Overview of the proposed memory augmented lookup dictionary based Transformer LM. W k represents the input tokens,
Ek is for the token embedding,“TM” means Transformer blocks in auto-regressive manner. Ck is the contextualized embedding
corresponding to the input tokens. Input and output embedding weights are shared in the LM.

using one vector as value for each key as in [14], we scale up the
dictionary size by introducing an extra hyper-parameter M to
form a key-value pair as (i,Di) where Di ∈ RM×demb . For the
kth token in the input sequence, the corresponding dictionary
index i is mapped through a modular hash with U , defined as:

i = ID(Tokenk) mod U (1)

where ID() refers to the vocabulary id of the input token. We
believe with multiple vectors stored for each entry, much richer
contextual information could be memorized compared than the
single vector counterpart. To consider more context in dictio-
nary indexing, we also extend Equation 1 to N-gram case as in
[10], where the dictionary index i is calculated as follows

i = (
k∑

n=k−N+1

ID(Tokenn)) mod U (2)

where N indicates the number of token IDs to aggregate. For
example, if N = 2, we sum up the IDs of the current token and
its previous token before the modulo operation.

To trade off information redundancy and memory capacity,
collision is allowed when doing hashing. U , N and M can be
adjusted appropriately. We assume this approach could utilize
the dictionary memory more efficiently. We will show the influ-
ence of changing the three hyper-parameters to the performance
in results part.

2.2. Dictionary Update

As the kth token is mapped to the dictionary memory Di

through Equation 1, each memory vector dm
i is updated by the

embedding of current token’s next token ek+1, which can be
formulated as:

d̃m
i =

{
dm
i ∗ α+ ek+1 ∗ (1− α) if Xk+1 = 1

dm
i if Xk+1 = 0

(3)

where α is a smoothing hyper-parameter that indicates how
much information comes from ek+1, and we set it as 0.5
for all later experiments. We define a Bernoulli Variable

Xk+1 ∼ Bern(Pk+1), which decides how many vectors will
be updated in the matrix Di. Pk+1 indicates the update ratio,
computed by the normalized occurrence of the k + 1th token in
training data:

Pk+1 =
1

log (Count of Tokenk+1)
. (4)

In this case, embeddings of low frequency tokens are able to
contribute more to the corresponding memory compared to high
frequency tokens. Token frequencies are calculated with train-
ing text and corresponding text tokenizer.

2.3. Context Selection

We use an attention module to relate the output representation
of the current token to the corresponding dictionary memory.
Attention performs as a mapping function for the input query
(Q) and key-value (K-V) pairs, as

Attention(Q,K,V) = Softmax(
QKT

√
demb

)V. (5)

As we share the input and output embedding weight in the
Transformer LM, and the dictionary memory stores the candi-
date tokens’ embedding during training, we assume the atten-
tion module could help select useful information from the mem-
ory given the output representation of the current token. For the
kth token, we define the contextualized token embedding from
the Transformer model as ck, and its corresponding dictionary
memory is defined as Di, where i is the hashing index from Eq
1 or 2. The new output representation c̃k is computed as:

c̃k = Attention(ck,D
i,Di), (6)

which will then be used to calculate the output token distribu-
tion.

2.4. Training and Inference

During training, the context selection operation was done be-
fore the dictionary update for the reason that the update infor-
mation in Eq 3 for the current input sentence will not affect the
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Model Input Search
Overall Tail-1 Tail-2 PPL Overall Tail-1 Tail-2 PPL

CER/SER CER CER CER/SER CER CER
Conformer 6.19 / 44.91 15.87 13.82 13.51 / 45.38 22.38 21.46
with Language Model
+ LM 5.55 / 41.80 13.46 11.86 36.49 9.07 / 30.11 13.86 13.78 13.92
+ LM [10] 5.42 / 40.37 12.50 11.18 8.91 / 29.79 13.50 13.44
+ LM [14] 5.35 / 40.19 12.48 10.97 9.02 / 30.23 13.80 13.68
+ Ours 5.09 / 38.86 11.46 10.30 31.44 8.29 / 27.60 12.34 12.13 11.22

+8.3% +14.9% +13.2% +8.6% +11.0% +12.0%
+ LML 4.83 / 37.29 10.94 9.67 26.37 8.24 / 27.21 12.26 12.27 10.82
+ OursL 4.73 / 36.90 10.54 9.54 25.18 7.80 / 26.20 11.49 11.41 9.70

+2.1% +3.7% +1.3% +5.4% +6.3% +7.0%
Table 1: Evaluation of CER, SER and language model perplexity (PPL) on two internal Chinese ASR test sets. “Input” and “Search”
refer to voice input and voice search domain test sets respectively. L refers to the LM with 1024 embedding size.

current context selection. To stabilize training, we also disable
the dictionary update for the first 1000 training steps to warmup
the newly initialized embedding to a good distribution. During
inference, the dictionary update is also disabled to avoid any
information leakage for auto-regressive prediction. With the
trained memory augmented Transformer LM, we apply shal-
low fusion to integrate the LM to ASR decoding with weight
λsf . Also, Internal Language Model Estimation (ILME) [15]
is adopted to suppress the internal LM of the E2E ASR and
advocate the contribution of the external LM, which has been
proved to be quite effective especially there is domain mismatch
between textual distribution of ASR and LM training data. The
weight of ILME is noted by λi. We also tried LM rescoring over
the N-best output of beam search, and the weight of rescoring
is noted by λres.

3. Experiment
3.1. Datasets

We adopt the LibriSpeech [16] dataset to evaluate the ASR
performance in English. We use the standard 960 hours data
for training and the “clean” and “other” test sets for evalu-
ation. The corresponding LM is trained on PG-19 [17], an
11GB in-domain text corpus consisting of books extracted from
Project Gutenberg. To match the averaged sentence length in
LibriSpeech, we process the PG-19 into a sentence-level cor-
pus. We use the unigram tokenizer [18] with vocabulary size of
5000 from ESPnet [19] for both ASR and LM training. Also,
we evaluate our method on two internal Chinese video datasets.
We have a 10k hours annotated audio dataset for general ASR
training and two test sets: one is voice input domain (5103 utter-
ances) and the other is voice search domain (6424 utterances),
which are two different domains compared to the ASR training
set. As for the LM training, we have a 60GB text corpus for
the voice input domain and 2GB corpus for the voice search do-
main. We process the Chinese text at the character level with a
vocabulary size of 11k (with both Chinese characters and En-
glish subword tokens).

Besides evaluating the overall performance on the above
mentioned test sets, we also assess the ASR metrics on tail to-
kens. Tail tokens are defined as the tokens whose accumulated
frequency in the training corpus is lower than a threshold,
which we set as 5%, i.e. the frequency ratio of head and tail
tokens is 95:5. Both 1-gram (Tail-1) and 2-gram (Tail-2) tail to-
kens are extracted from test sets at character-level for Chinese.
For English test set, we only extracted 1-gram word-level tail

tokens.

3.2. Experimental settings

We train both Chinese and English ASR models with a LAS [2]
architecture, for which we use a 12-layer Conformer[20] en-
coder and 6-layer Transformer decoder for Librispeech (as in
ESPnet), and a 18-layer Conformer encoder and 4-layer Trans-
former decoder for the 10k hours Chinese dataset.

For LibriSpeech, we configure the LM as a 16-layer Trans-
former blocks with 1024 embedding size. It is trained on PG-
19 for sentence-level language modeling with a dropout rate of
0.3 and an effective token number of 524288 in each update.
Adam with betas of (0.9, 0.98), and weight decay of 0.01 is
used for the optimization with 10k warmup steps. For the pro-
posed look-up dictionary, we use 2-gram for dictionary hashing
(as in Eq. 2); U is set to 5k; M is set to 64. The LM for Chi-
nese datasets consists of 4 layer Transformer blocks with the
embedding size of 384 and 1024 for small and large configu-
ration respectively. For look-up dictionary, U is set to 10k and
other hyper-parameters are the same with the Librispeech set-
tings.

For ASR inference in this paper, we set λsf={0.15,
0.4, 0.4}, λres={0.0, 0.0, 0.1}, λi={0.0, 0.2, 0.2} for
{“LibriSpeech”, “Input”, “Search”} respectively, which give
the best performance. A beam size of 60 is used for the Lib-
riSpeech and 10 for Chinese test sets. We use Word Error Rate
(WER) as ASR metric for LibriSpeech test sets, and Character
Error Rate (CER) and Sentence Error Rate (SER) for Chinese
test sets. For both test sets, we also calculate the tail token error
rate by only counting errors on tail tokens and ignoring errors
on other tokens within the same testing utterances.

3.3. Results

We compare our model with the original Transformer LM, as
well as two other baselines: N-gram augmented embedding for
LM training in [10] and single-vector memory for BERT pre-
training in [14]. In Table 1, while the original LM helps the
ASR model achieve lower CER and SER, our method shows
significant improvement over it and the two baseline methods.
We achieve 8.3% and 8.6% CER improvement on the general
“Input” and “Search” test sets over the Transformer LM, and
the CER improvement of tail tokens are even higher: 13% on
1gram and 12.5% on 2gram tail tokens. As we increase the hid-
den size of the LM from 384 to 1024, the performance gain is
not as much as the small LMs, but our method still outperforms
the LM by 3.7% on overall CER and 4.6% on tail tokens CER.
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Model Clean Other
Overall Tail-1 Overall Tail-1

Conformer 3.12% 11.92% 6.23% 24.52%
+ LM 3.08% 10.93% 5.81% 23.30%
+ Ours 3.01% 10.57% 5.73% 22.93%

Table 2: Evaluation of WER on the LibriSpeech test sets.

Figure 2: Change of the overall CER (%) on the “Search” test
set with different dictionary size and different N-gram settings.

The smaller performance gain when increasing LM model size
is expected given fixed amount of training data as the increased
model capacity would take over part of the functionalities the
memory block provides. In the meantime, the proposed LM im-
proves the perplexity (PPL) by a great margin over the baseline
model.

In Table 2, our proposed method also shows consistent im-
provement on the two LibriSpeech test sets. The improvement
on tail word error rate is more significantly compared to the
overall WER improvement as on Chinese test sets. The im-
provement on Librispeech test set is not that significant com-
pared to Chinese test sets, and we believe the reason is that sub-
word tokens are employed for English data sets. When we still
uses 2-gram based hashing as for Chinese data sets, it actually
incorporates less word-level contextual information (2-gram on
subword level sometimes even does not correspond to a single
word). We believe if we increase the N in English data sets,
the performance could be further improved. We leave this for
future investigation.

4. Analysis
In this section, we analyze how the different hyper-parameters,
including dictionary size U , N in N-gram for hashing, mem-
ory update ratio and memory size of each entry M , affect the
performance. All experiments are conducted on the Chinese
“Search” test set, and the Transformer LM model with the pro-
posed memory augmented lookup dictionary has 4 layers and
384 hidden size.

In Figure 2, we show the change of the overall CER (y axis)
with the increase of dictionary size in different N-gram settings.
It is clear that for each N-gram setting, increasing the dictionary
size will boost the performance, and 2-gram achieves the best
performance. Since the degree of collision elevates with bigger
U and N , larger N means more collision; thus 4-gram performs
even worse than 1 gram case when the dictionary size is not
large. Considering the extra space taken by large dictionary
size, we choose the 2-gram with 10k dictionary size.

Figure 3 analyzes if a large memory size M would help
the selection and the overall performance. We use the Informa-
tion Gain (IG) which is computed by the difference in the atten-
tion entropy (as in Eq. 5 and 6) between a randomly initialized
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Figure 3: Overall CER, Gradients, and Information Gain (IG)
change on the “Search” test set with the increase of memory
size M

dictionary and a well-trained one. The entropy indicates how
well the dictionary maps the information to the contextualized
embedding of the current token c̃k[21]. The results show the
IG is highly correlated with M . Besides, we adopt the Gradi-
ent Attribution test [22, 23] to address the dictionary memory’s
contribution further. It computes the normalized gradient of the
model variables to reflect its contribution to the output predic-
tion. It shows the gradients are also consistent with the previ-
ous finding that a larger memory would receive more gradients,
indicating a greater contribution to the model prediction. How-
ever, considering the small relative gain and high computational
cost when we increase the memory size from 64 to 128, we set
the memory size as 64 in our experiments.

Finally, we want to discuss how the proposed memory aug-
mented lookup dictionary will affect the model size and infer-
ence speed. During inference, compared to the baseline Trans-
former LM, the additional computation of our method is only
the dictionary indexing (Eq. 2) and context selection (Eq. 6).
For lookup dictionary, the indexing operation requires O(1)
time cost. The context selection also performs as a constant
time cost as O(M), where M is the memory size of the dictio-
nary. We evaluate the Real Time Factor (RTF) on the “Search”
test set on a NVIDIA A100 GPU with batch size equals to 1.
The RTF is 0.124 for ASR model only, and 0.195 and 0.198
for the baseline Transformer LM and our proposed LM, respec-
tively. We notice that such additional operations almost do not
affect the decoding speed in practice though the model size in-
creases by introducing the lookup dictionary.

5. Conclusions
In this paper, we propose a memory augmented lookup dictio-
nary based Transformer LM to improve the language modeling
in ASR, especially for long tail tokens. We have improved the
baseline Transformer LM in terms of overall ASR metrics and
the tail words error rate in both Chinese and English test sets.
We also analyze our method under different hyper-parameter
settings. Overall, the results prove the superiority of the method
over the baseline Transformer LM without sacrificing inference
speed. Future work includes more experiments on English data
sets, especially in domain mismatch condition. We are also in-
terested in applying the method to general language modeling
tasks.
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