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Abstract
Sustained vowels have been largely used to quantify vocal im-
pairment in Parkinson’s disease (PD), with most studies focusing
on a single corpus. Presumably, features obtained from sustained
vowels are language-independent, but how findings generalize
across cohorts is unclear. This work analyzes 61 phonatory
features from 5 corpora in American English, Italian, Castilian
Spanish, Colombian Spanish, and German, respectively, by con-
ducting a statistical and correlation analysis. We use robustness
as a criterion in which a feature displays the same behavior
across corpora. The statistical analysis showed that the features
provided good separability between PD and controls in only two
out of five corpora, and none of the features displayed robustness.
However, experiments report significant correlations between fea-
ture values and clinical scores. These findings provide valuable
insights into the acoustic corpora-based dissimilarities, which
should be considered when generalizing findings.
Index Terms: Parkinson’s Disease, Sustained vowels, Statistical
analysis, Correlation Analysis, Robustness

1. Introduction
Sustained phonations have been extensively used for quantifying
vocal impairment occurring in Parkinson’s Disease (PD) as this
task can help to circumvent part of the articulatory and linguistic
confounds of running speech [1]. Phonatory approaches working
with sustained vowels could be considered language-independent,
even though a vowel might not always have the same phonetic
realization across languages.

Traditional phonatory features are perturbations of funda-
mental frequency (jitter), perturbations of amplitude (shimmer),
and noise (e.g., Harmonic to Noise Ratio (HNR), Noise to
Harmonics Ratio (NHR)). Previous studies reported significant
differences between groups for these measurements, with jitter,
shimmer, and NHR higher and HNR lower in people with PD
[2, 3, 4]. More recently, non-linear features have been intro-
duced to better characterize abnormal vocal fold vibration and
non-linear pressure flow in the glottis, leading to parametrization
sets that include Recurrence Period Density Entropy, Detrended
Fluctuation Analysis, correlation dimension, Hurst Exponent,
and Largest Lyapunov Exponent [5, 6].

Even though many studies analyzed phonatory features, only
a few considered several corpora simultaneously. Rusz et al. [7]
performed a speech analysis of Czech, English, German, French,
and Italian speakers in the early phase of PD. In that study, as
phonatory features, they only analyzed HNR via a sustained
phonation paradigm, but this feature did not reach significance in
any corpus. Tsanas and Arora [8] investigated the differences in
307 dysphonia measures between UK- and US-English-speaking
subjects with PD. Even though the classical acoustic measures,

such as jitter and shimmer, were very similar in the two cohorts,
there were pronounced differences in the behaviors and trends
of more complex metrics, such as Vocal Fold Excitation Ratio
and Mel Frequency Cepstral Coefficients (MFCCs). The authors
conducted the same analysis on a larger cohort of participants
from seven countries whose speech samples were collected under
uncontrolled acoustic environments [9]. They reported that the
majority of dysphonia measures did not differentiate PDs from
healthy controls (CNs) sufficiently well, probably because of
the reduced signal bandwidth. Kovac et al. [10] considered
recordings from Czech, American English, Israeli, Colombian
Spanish, and Italian-speaking subjects. With respect to the
phonatory features analyzed, harmonic richness factor, mean
normalized amplitude quotient, mean quasi-open quotient, and
jitter reached significance in one speech corpus only.

Overall, it is unclear how findings generalize across corpora,
as corpora-based dissimilarities such as different background
noises, sampling frequency, or microphones (i.e., the chan-
nel characteristics) can influence the estimation of phonatory
measurements [11, 12]. Hence, as phonations may be cohort-
dependent, it is crucial to understand whether phonatory analysis
should be conducted separately for participants from different
cohorts, undertaking cross-cohort comparisons [8]. Previous
studies on phonation performing cross-corpora analysis displayed
some limitations. First, they typically investigated only the be-
haviors of the most typical phonatory features (e.g., jitter, HNR).
Second, they only considered a few speech corpora at a time
without assessing whether the features display homogeneous
behaviors across corpora. Third, the criteria adopted to probe
the robustness of the features were too weak, increasing the
probability of falsely reporting as robust features that display
different behaviors across cohorts and corpora.

In this study, the behaviors of 61 interpretable phonatory
features were examined using five corpora of speakers who have
different mother tongues: American English, Castilian Spanish,
German, Italian, and Colombian Spanish, respectively. Besides
considering the most classic amplitude and frequency perturba-
tion parameters, more recent approaches based on complexity
parameters, modulation spectra, noise, and fluctuation (or tremor)
were analyzed. The proposed analysis leverages robustness [13]
as a criterion in which a feature behaves the same, independently
of the corpus considered. Even though the robustness of differ-
ent prosodic and linguistic features for the detection of PD has
already been assessed [14, 13], the robustness of phonological
measurements still needs further investigation. In this respect,
identifying which tasks and features are robust represents a step
forward in the development of a universal framework for PD
evaluation and monitoring. Moreover, given their interpretable
meaning, if these features would display robustness, they might
be employed in clinical scenarios as PD biomarkers.
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2. Materials
Five different corpora were used in this study: Neurological
Signals (NLS) [15], Neurovoz [16], Italian Parkinson’s Voice
and Speech [17], GITA [18], and GermanPD [19].1 Table 1
summarizes corpora demographics and disease severity statistics.

2.1. American English
NeuroLogical Signals (NLS) is a data set collected at Johns
Hopkins Medicine (JHM) by the authors of this study. It contains
recordings from individuals with neurological disorders (NDs)
and CNs. The Johns Hopkins Medical Institutional Review
Board approved the data collection, and all participants signed
informed consent. Participants with PD received dopaminergic
medication before the recording session. Speech signals were
recorded with a headset at 24 kHz in a quiet room. In this study,
we considered 23 participants with clinically established PD and
27 CN participants matched in age. None of the participants in
the CN group had a history of symptoms related to PD or any
other NDs.

2.2. Castilian Spanish
Neurovoz is a data set that contains speech samples from 32 CNs
and 47 participants with PD whose native language is Castilian
Spanish. The data collection was performed in compliance
with the Helsinki Declaration and was approved by the Ethics
Committee of Hospital General Universitario Gregorio Marañón
in Madrid (Spain). All participants involved in the study signed
informed consent. Participants with PD received dopaminer-
gic medication before the recording session. Recordings were
originally sampled at 44.1 kHz and collected in a quiet room.

2.3. Colombian Spanish
GITA is a data set collected by Universidad de Antioquia in
Medellı́n (Colombia). It contains recordings from 50 partici-
pants with PD and 50 CNs whose native language is Colombian
Spanish. The data collection was performed in compliance with
the Helsinki Declaration and was approved by the Ethics Com-
mittee of the Clínica Noel, in Medellı́n. All participants signed
informed consent. Participants with PD received dopaminergic
medication before the recording session. None of the CN par-
ticipants reported symptoms associated with PD or other NDs.
Recordings were originally sampled at 44.1 kHz and collected in
a quiet room.

2.4. German
GermanPD is a data set collected in the hospital of Bochum
(Germany). It contains speech recordings from 88 PD and 88
CN participants whose native language is German. The ethics
committee of the Ruhr-University Bochum approved the study.
All participants signed informed consent. Participants with PD
received dopaminergic medication before the recording session.
Speech samples were collected in a quiet room using a headset
microphone, located approximately 5 cm from the participant’s
mouth. Recordings were originally sampled at 16 kHz.

2.5. Italian
The Italian Parkinson’s Voice and Speech (ItalianPVS)2 is a
corpus containing recordings from 22 elderly CNs and 28 par-
ticipants with PD. The recordings employed in this study are
publicly available. The information concerning the participant’s

1We considered only these five data sets as they were the only ones
to which we had or received access.

2https://ieee-dataport.org/open-access/italian-par
kinsons-voice-and-speech

Table 1: Demographic and disease severity statistics of the study
population. When available, gender, age distribution, and scores
on the Unified Parkinson’s Disease Rating Scale Part III (UPDRS-
III) and the Hoen & Yar Scale are reported. Abbreviations: M,
Male; F, Female; std: standard deviation.

Data set Category Sample
size Gender Age

(std)
UPDRS-III

(std)
H&Y
(std)

NLS CN
PD

27
23

M=16; F=11
M=14; F=9

64.70 (13.3)
67.31 (15.6)

–
26.5 (11.4)

–
2.3 (0.4)

Neurovoz CN
PD

32
47

M=14; F=18
M=29; F=18

67.50 (6.2)
71.40 (10.3)

–
12.8 (11.3)

–
2.3 (0.7)

GermanPD CN
PD

88
88

M=44; F=44
M=47; F=41

64.60 (13.7)
67.00 (10.5)

–
22.7 (10.5)

–
2.4 (0.7)

ItalianPVS CN
PD

22
28

M=10; F=12
M=19; F=9

67.30 (4.8)
66.40 (9.4)

–
–

–
–

GITA CN
PD

50
50

M=25; F=25
M=25; F=25

60.90 (9.6)
61.10 (9.4)

–
37.6 (18)

–
2.3 (0.5)

informed consent is detailed in their reference papers and dissem-
ination platforms. Participants with PD received dopaminergic
medication before the recording session. Speech samples were
collected in a quiet, echo-free room using an external condenser
and sampled at 16 kHz.

3. Methods
3.1. Phonatory Feature Extraction
Table 2 summarizes the phonatory features extracted. Features
were extracted from the sustained phonation of different vowels:
/a:/, /e:/, /i:/, /o:/, /u:/. NLS only contains recordings for the
vowel /e:/, while GermanPD for the vowel /a:/. When multiple
phonations were recorded, we averaged feature values across
phonations for each speaker separately. On ItalianPVS, Ger-
manPD, and Neurovoz, three phonations were recorded for each
vowel, two on NLS and one on GermanPD. The Automatic
Voice Condition Analysis (AVCA)3 library in MATLAB was
used to perform the extraction [5]. This library computes 261
coefficients per recording, calculated per frame, representing
the mean and standard deviation of four main feature families:
amplitude and frequency perturbation and fluctuation, spectral-
cepstral, complexity, and modulation spectra. However, the
spectral-cepstral features, which include MFCC, perceptual lin-
ear predictive coefficients (PLP), and some Modulation Spectra
features such as Modulation Spectra Centroids (MSCents), and
dynamic range (MSDR), were not considered as their physical
interpretation is unclear. In this sense, although features like
MFCCs can contain valuable information about phonation, these
values will only be used in machine-learning scenarios and not
as biomarkers in clinical environments. In the end, 61 features
were extracted, including statistics such as mean and standard
deviation for several of them. Before the feature extraction, all
recordings were resampled at 16 kHz as required by the AVCA
library.

3.2. Statistical and Correlation Analysis
The non-parametric Kruskal–Wallis H-test [30] was used to
conduct pair-wise statistical tests to determine any significant
differences between the feature distributions of PD and CN par-
ticipants4. The analysis was conducted in each corpus separately.
To control the False Discovery Rate (FDR), we applied the Ben-
jamini–Hochberg correction5. As family-wise error rate, α was
set to 0.05. Moreover, the correlations of the feature values with

3https://github.com/jorgomezga/AVCA-ByO
4To perform the pair-wise Kruskal-Wallis H-tests, we used

scipy.stats.kruskal library in Python.
5To perform the Benjamini–Hochberg correction, we used statsmod-

els.stats.multitest.fdrcorrection, with default method.
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Table 2: For each feature family, the feature names with their corresponding abbreviation in parenthesis, the expected behavior (EB) of
the features in individuals with PD, references to previous studies supporting the hypothesis behind the features’ EB, and the number of
coefficients in each family are reported. Abbreviations: ↑, increasing; ↓, decreasing; N◦: number.

Feature Family Coefficients EB Related Works N◦

Amplitude,
frequency
perturbation and
fluctuation

Absolute and relative jitter (rJitta) and shimmer (rShim), Relative Average Perturbation Quotient (rAPQ), Pitch Period Perturbation Quotient (PPQ), ↑ [20], [21], [22]
Three-point Amplitude Perturbation Quotient (APQ3), Five-point Amplitude Perturbation Quotient (APQ5), [2], [3], [4],
F0-Tremor Intensity Index (FTRI), Amplitude-Tremor Intensity Index (ATRI), Noise-to-Harmonics Ratio (NHR),
Normalised Noise Energy (NNE), Glottal-to-Noise Excitation Ratio (GNE) 21

Statistics about Harmonics-to-Noise Ratio (HNR), Cepstral-HNR (CHNR) ↓ [2], [5], [23], [24]

Complexity

Correlation dimension (D2), Lempel-Zip Complexity (LZC), statistics about Largest Lyapunov Exponent (LLE), ↑ [25], [6], [26]
Hurst Exponent (HE), Approximate Entropy (ApEn), Sample Entropy (SampEn), Gaussian kernel Approximate Entropy (GApEn), [27], [5] 26
Fuzzy Entropy (FuzzyEn), Modified SampEn (mSampEn), Permutation Entropy (PE), Detrended Fluctuations Analysis (DFA)
Recurrence Period Density Entropy (RPDE), Markovian Entropy (MarkEnt)

Modulation Spectra Modulation Spectrum Percentiles (MSP), and statistics about Modulation Spectra Homogeneity (MSH), ↑ [5], [28], [29] 14
Cumulative Intersection Point (CIL), Rate of Points Above Linear Average (RALA), and Ratio Above Linear Percentiles (RALP)

the Hoehn and Yahr Scale (H&Y) and the Unified Parkinson’s
Disease Rating Scale (UPDRS-III) were assessed.6 Before the
correlation analysis, features were normalized by subtracting the
mean and dividing by the standard deviation.

3.3. Feature Robustness
We considered robust a feature if these three conditions are met:
1. If it reports a significant difference between the medians of

the PD and CN group distributions in at least two data sets.
2. If it displays the same expected behavior (EB) in all the data

sets where it is significant.
3. If the correlation between the feature values and the clinical

scores is significant, the trend of the correlation follows the
EB postulated for the feature.

Similar criteria for robustness were previously introduced by
Kovac et al. and Favaro et al. [14, 13]. The EB of a given
feature is grounded in the previous literature documenting the
speech dysfunctions connected to PD. An ideal robust feature
is a feature displaying a homogeneous behavior across corpora.
The features analyzed and their EBs are summarized in Table 2.

4. Results and Discussion
The upper section of Table 3 reports the pairwise Kruskal–Wallis
H−test results for the features that were significant (p < 0.05)
in the statistical analysis. With respect to the first family of
phonatory features (see Table 2), the values of the features repre-
senting rJitta, rShim, rAPQ, relative PPQ, NNE, and GNE were
significantly higher for PDs than CNs on GITA, but significantly
lower on ItalianPVS. A similar behavior on ItalianPVS can be
found in a previous study using a different feature extraction
library [31]. Differently, features related to HNR ratio and CHNR
were significantly lower for the PD than for the CN group on
GITA (as expected) but significantly higher for participants with
PD than for CNs on ItalianPVS. A similar result for CHNR was
obtained on Neurovoz using the vowel /u:/, where the median
value of the PD group was significantly higher than that of the
CN group. Thus, since the observed behaviors of amplitude,
frequency perturbation, and fluctuation features contradicted the
assumptions on their EBs on ItalianPVS and Neurovoz, they vio-
lated the second criterion of robustness. As such, these features
cannot be considered robust in our framework. Moreover, as the
Hurst Exponent (mean) was significant only on GITA, it violates
the first criterion of robustness, which requires a feature to show
significance in at least two data sets.

6To perform the correlation analysis, we used scipy.stats.spearmanr
library in Python.

Figure 1: Box plots showing some of the significant features
(p <0.05) extracted from the sustained phonation of the vowel
/a:/ on GITA and ItalianPVS.

With respect to the modulation spectra features, RALA
(mean) was significant on both GITA and ItalianPVS. However,
although this feature displayed the EB on GITA, where it was
significantly higher in the PD than in the CN group, it shows
the opposite behavior on ItalianPVS (see Figure 1). Similarly,
even though CIL, PE, and LLE were significant on ItalianPVS,
they behaved against the EBs postulated for these features. It
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Table 3: Summary of the significant results from the statistical and
correlation analysis. For the statistical analysis, corpus name,
feature name, p-value, observed behavior (OB), and AUROC are
reported for each significant feature. For the correlation analysis,
corpus name, clinical score, feature name, p-value, OB, and
Spearman’s rank correlation coefficient (ρ) are reported for each
significant correlation. In square brackets, next to the corpus
name, we specify the vowel(s) on which the results were obtained.
The AUROC is reported for the vowel /a:/. If the OB matches
the EB of a given feature, the arrow representing the EB of the
feature is bolded. Abbreviations: ↑, increasing; ↓, decreasing.

Statistical Analysis

Corpus Feature pp-value OB AUROC

GITA

rJitta < 0.001 ↑↑ 0.75

[/a:/,/e:/, /i:/, /o:/, /u:/]

rRrRAP < 0.001 ↑↑ 0.78
rPPQ < 0.001 ↑↑ 0.80
rSPPQ < 0.001 ↑↑ 0.75
rShdB < 0.001 ↑↑ 0.75
rShim < 0.001 ↑↑ 0.74
rAPQ < 0.001 ↑↑ 0.75
NNE (mean) < 0.001 ↑↑ 0.76
HNR (mean) < 0.001 ↓↓ 0.75
CHNR (mean) 0.03 ↓↓ 0.65
GNE (mean) < 0.001 ↓↓ 0.66
RALA (mean) < 0.001 ↑↑ 0.74

Neurovoz [/u:/] CHNR (mean) 0.03 ↑ 0.66

ItalianPVS

rJitta 0.04 ↓ 0.70

[/a:/,/e:/, /i:/, /o:/, /u:/]

rPPQ 0.04 ↓ 0.69
rShdB 0.07 ↓ 0.77
rShim 0.08 ↓ 0.76
rAPQ 0.007 ↓ 0.77
NNE (std) 0.02 ↓ 0.62
HNR (mean) < 0.001 ↑ 0.84
CHNR (mean) 0.003 ↑ 0.79
GNE (mean) 0.008 ↑ 0.75
LLE (mean) < 0.001 ↓ 0.86
PE (mean) < 0.001 ↓ 0.86
RALA (mean) 0.04 ↓ 0.70
MSHphase (mean) 0.04 ↓ 0.68
CIL (mean) 0.03 ↓ 0.71

Correlation Analysis

Corpus Score Feature pp-value OB ρρ

GITA

H&Y

Hurst (mean) 0.01 ↑↑ 0.35

[/a:/]

rApEn (mean) 0.04 ↑↑ 0.28
CIL (mean) 0.03 ↑↑ 0.30
RALP25 (mean) 0.04 ↑↑ 0.29

UPDRS-III Hurst (mean) < 0.001 ↑↑ 0.48
DFA (mean) 0.01 ↑↑ 0.36

Neurovoz H&Y

rJitt 0.004 ↑↑ 0.51

[/a:/]

rPPQ < 0.001 ↑↑ 0.57
rSPPQ 0.001 ↑↑ 0.56
rShdB 0.008 ↑↑ 0.47
rShim 0.004 ↑↑ 0.51
rAPQ 0.003 ↑↑ 0.52
HNR (mean) 0.003 ↓↓ 0.53
CHNR (mean) 0.01 ↓↓ 0.44
RALA (mean) 0.04 ↑↑ 0.38
RALP75 (mean) 0.03 ↑↑ 0.40

UPDRS-III rSPPQ 0.04 ↑↑ 0.37

GermanPD [/a:/] H&Y RALP75 (mean) 0.04 ↑↑ 0.22
RALP95 (mean) 0.01 ↑↑ 0.27

NLS [/e:/] UPDRS-III HNR (mean) 0.006 ↓↓ 0.63

follows that even the modulation spectra features did not satisfy
the robustness conditions and, as such, did not pass the test of
robustness.

On the whole, all the significant results reported on Ital-
ianPVS and GITA were replicated across the phonations of the
different vowels analyzed. Similarly, in the other data sets, no
significance was reported for any vowel, except for Neurovoz
when analyzing the vowel /u:/ (see Table 3). Altogether, these
results show that, within a certain data set, changing vowels does
not exert a particular impact on the experimental results, which
confirms the language independence of vowel phonations for
most features. It is important to notice that even though these
features were most significant in only two corpora and did not

display a robust behavior, this fact does not exclude the possibil-
ity that, altogether, they could provide some good separability
between PD and CN groups in a multivariate analysis or machine
learning classification experiments. However, our results suggest
that the analyzed features cannot be reliably used in a clinical
scenario as biomarkers of PD.

The lower section of Table 3 reports the significant correla-
tions between the feature values and the clinical scores (i.e., H&Y
scale, UPDRS-III). The correlation results slightly differed when
considering different vowels. Thus, we report and discuss results
for the vowel /a:/ as this vowel is contained in all the corpora,
except in NLS, for which we report results for the vowel /e:/.
For ItalianPVS, no clinical scores were available, so we could
not perform any correlation analysis on this data set. Features
encoding amplitude, frequency, perturbation, fluctuation, and
entropy-related metrics were the most predictive of disorder
severity as they show significant weak (ρ = [0.20 − 0.39]) or
moderate correlations (ρ = [0.40− 0.59]) with clinical scores
across corpora. The only two features that showed a significant
correlation with the clinical scores in more than one corpus were
HNR (mean) and RALP75 (mean). In general, the trends of the
significant correlations were aligned with the EBs of the features
in each speech corpus analyzed. However, different features were
effective in tracking disorder severity in the different corpora
analyzed, a phenomenon that further emphasizes the inconsistent
behaviors of these measurements.

5. Conclusions and Future Work
This study examines the behavior of a composite set of inter-
pretable features encoding phonatory information. It aims at
exploring the effectiveness of these features in modeling char-
acteristic acoustic patterns occurring in PD by assessing their
discriminatory power and cross-corpora robustness. Our statisti-
cal analysis showed that the phonatory features provided good
separability between PD and CN groups in only two out of five
corpora. In this respect, none of the features displayed robustness,
as their behaviors were not homogeneous across corpora. On
the other hand, our experiments highlight the effectiveness of a
subset of phonatory features in capturing disorder severity, as
they showed significant correlations with the clinical scores, and
the trends of the correlations behaved as expected.

On the whole, vowel phonation has been extensively adopted
for its intrinsic benefits of being language-independent and elimi-
nating potential linguistic and articulatory confounds originating
in the analysis of running speech. However, the suitability of this
task for the assessment of PD when considering multiple cohorts
and/or corpus at a time has been questioned by the current study.
In this regard, it has been recently shown that linguistic and
prosodic features extracted from running speech display robust
cross-lingual and cross-corpora behaviors [13, 7, 14]. As such,
they might be a more valuable candidate for evaluating PD in a
universal framework. Even in studies involving a single corpus,
the analysis of phonatory features can be problematic as these
features require long audio recordings of sustained phonations
(more than 3 s), a fine calibration of the recording system, and a
controlled acoustic environment to be estimated [9, 11].

In a future study, we plan to validate the results obtained in
this work by analyzing a greater sample of cohorts, balancing
the classes in terms of the number of individuals, gender, age,
medication time, PD disease severity, and disorder phenotype.
We will also conduct cross-lingual machine learning experiments
following a rigorous methodology [31] to observe to which extent
the lack of robustness reported in this study will affect the model
performances.
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