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Abstract
State space models (SSMs) have recently shown promising re-
sults on small-scale sequence and language modelling tasks,
rivalling and outperforming many attention-based approaches.
In this paper, we propose a multi-head state space (MH-SSM)
architecture equipped with special gating mechanisms, where
parallel heads are taught to learn local and global temporal dy-
namics on sequence data. As a drop-in replacement for multi-
head attention in transformer encoders, this new model sig-
nificantly outperforms the transformer transducer on the Lib-
riSpeech speech recognition corpus. Furthermore, we augment
the transformer block with MH-SSMs layers, referred to as the
Stateformer, achieving state-of-the-art performance on the Lib-
riSpeech task, with word error rates of 1.76%/4.37% on the de-
velopment and 1.91%/4.36% on the test sets without using an
external language model.
Index Terms: speech recognition, transducer, librispeech, state
space model, attention-free, transformer, stateformer

1. Introduction
Recurrent neural networks (RNNs) have historically been a core
approach for a wide range of sequence modelling tasks such
as speech recognition [1, 2], machine translation [3, 4] and
language modelling [5, 6]. However, RNNs were rapidly re-
placed with the introduction of the transformer [7] and large
pre-trained models [8]. The effectiveness of the transformer has
also caused other fields such as computer vision to consolidate
towards attention-based models [9, 10].

One of the key reasons behind the success of transformers
and their widespread use is the self-attention mechanism. Un-
like previous approaches, self-attention was shown to be highly
effective at capturing global features of a sequence by mod-
elling all pairwise interactions. Furthermore, while transform-
ers are exceptionally good at capturing global long-range de-
pendencies they are less able in modelling local patterns. To this
end, there has been a range of work on combining convolutional
networks with attention for sequence modelling, and has been
found to be highly effective for speech recognition [11, 12, 13].

Meanwhile, the deep learning community has slowly been
paying more attention to alternative recurrent neural network
approaches to effectively and efficiently model sequences [14,
15, 16, 17]. Specifically, a well-established signal processing
and control theory technique, the state space model (SSM) [18],
which historically has been widely used in many continuous or
discrete time-series and control problems [19, 20] has been un-
der renewed scrutiny. However, the recurrent time-variant na-
ture of general SSMs has traditionally made them computation-
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ally expensive and inaccessible to many large-scale sequence
tasks. Nonetheless, recent work has shown that it is possible to
simplify and scale state space models and train them in paral-
lelized manner, by equivalently rephrasing them as a convolu-
tion with variable-length kernels [14, 15]. Further work has also
shown that simplified, structured versions of the time-invariant
state space model can be highly efficient, handle long-range de-
pendencies and be a formidable alternative to self-attention on
some sequence tasks, such as language modelling [21, 22, 23].

In this work, we evaluate and extend the work on SSMs for
speech recognition, proposing a multi-head state space model,
equipped with a novel gating mechanism. Since SSMs have
shown promising performance on long sequence tasks we hy-
pothesize that a multi-headed approach could better handle both
short and long-term modelling simultaneously. We investigate
the use of such multi-head state space models both as a replace-
ment and complement to self-attention in the acoustic encoder
of a neural network transducer model. Our technical contribu-
tions include:
(a) Stacked and multi-head generalization. We extend the

SSM approach by allowing multi-head processing of lin-
early projected lower-dimensional signals and stack such a
layer for better performance.

(b) Head gating. We propose an inter-head gating approach in
which different SSMs within the multi-head layer commu-
nicate by gating each other.

(c) Combination with attention. We also augment the trans-
former encoder by including a bidirectional SSM residual
block prior to the attention block for state-of-the-art perfor-
mance. This model is referred to as the Stateformer.

With these contributions, we advance the state of attention-
free models on the LibriSpeech speech recognition task, out-
performing strong attention-based baselines. We also show that
the Stateformer can achieve state-of-the-art performance on this
task with word error rates of 1.76%/4.37% on the development
and 1.91%/4.36% on the test sets, without using an external lan-
guage model.

2. State Space Model: The Linear RNN
The time-invariant state space model [24] is a fully linear recur-
rent network taking the following form:

xk = Axk−1 +Buk

yk = Cxk +Duk

}
y = SSM(u) (1)

It simply transforms an arbitrary input signal u into an output
signal y through some hidden process x. Since this model is
linear, it can also be phrased as a convolution [14, 25] allow-
ing it to be trained in a parallelizable manner without recur-

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

241 10.21437/Interspeech.2023-1036



rences. More importantly, this model can be made highly ef-
ficient and effective by restricting the parameters A,B,C,D
to be block-diagonal and ensuring that the transition matrix A
is stable i.e., the SSM generates bounded outputs for bounded
inputs [22, 26]. Furthermore, the effectiveness of this model
is highly dependent on its initialization. Work has found that
this system can encode the history of an input signal effectively
with a proper initialization scheme [21, 27]. The combination
of these ideas culminates in a model called S4 [22].

The S4 model is inherently unidirectional. For non-causal
applications such as the audio-encoder for offline speech recog-
nition, a bidirectional S4 can be used with non-linear activations
and pointwise linear layers [28]:

y ← Cat([S4(u), Rev(S4(Rev(u)))])

y ← Linear(Activation(y))
(2)

The next section will build upon this model by using multiple
parallel heads and introducing an inter-head gating mechanism.

3. Multi-Head State Space Model
This section will describe a number of technical and architec-
tural proposals for the audio-encoder in the transducer. Section
3.1 introduces the stacked MH-SSM. Section 3.2 describes a
novel gating mechanism which allows different SSM heads to
communicate. Section 3.4 combines the MH-SSM with self-
attention for a new transformer architecture. Finally, Section
3.3 describes how the MH-SSM can be used to replace the con-
volutional frontend.

3.1. Stacked & Multi-Head Extension

We extend the S4 layer with a significantly more flexible ap-
proach. Taking inspiration from multi-head self-attention, we
project the input Di-dimensional signal into H ∈ {2, 4, 8, . . . }
separate signals of dimension D̄i = Di/H , and process each
using an independent SSM that is randomly initialized. While
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Figure 1: The MH-SSM block first projects an input signal to
several lower-dimensional signals, each fed to a separate SSM.
The output is gated, concatenated and repeated a second time.

this can be followed by a simple non-linear activation such as
ReLU or GELU, we opt for a novel gating mechanism described
in the following section. Finally, we repeat this procedure once
again for a stacked module, see Figure 1. This module would
then operate as a drop-in replacement for the S4 in Equation 2
to form a bidirectional model. This multi-head design provides
the flexibility to learn both meaningful time-steps and different
types of temporal dynamics on sequence data.

3.2. Inter-Head Gating

By default, prior work has used the GELU activation function,
see Equation 2. In some experiments [22, 28], the GLU acti-
vation was also found beneficial. However, a multi-head state
space architecture with H heads offers many more gating pos-
sibilities. We propose an inter-head gating (IHG) approach in
which half the number of heads are used to gate the remaining
heads, allowing different heads to communicate and generally
leading to improved results, as illustrated in Figure 2. The IHG
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Figure 2: Previous approaches would either apply GELU or
GLU to the output of a single SSM. IHG gates the output of an
SSM using another independent SSM.

output is computed by mixing the heads according to (where σ
refers to the sigmoid):

a(h) = y(h) · σ
(
y(h+H/2)

)
, h = {1, ..., H/2} (3)

allowing different heads to communicate and gate each other,
generally leading to improved results. It should be noted that
the number of heads H needs to be even. While our approach is
wildly different, the notion of allowing heads to communicate
has also been suggested in [29] regarding attention, where linear
layers mix information across heads and have been shown to
improve performance.

3.3. Multi-Scale Frontend

Audio-encoders typically subsample the input sequence using a
convolutional frontend to reduce sequence length and increase
computational tractability [1, 30]. In this work, we utilize a
multi-scale (MS) state space front end using the MH-SSM to
make use of its ability to model longer-range dependencies, see
Figure 3. The frontend intertwines MH-SSM blocks that cap-
ture temporal dependencies and time reduction layers which re-
duce the frame rate resulting in the same output size and striding
as typical convolutional frontends.

3.4. Stateformer: State Space Augmented Transformer

A pure multi-head state space model architecture is attractive
due to its ability to capture both short and long-range depen-
dencies. However, since the state space model is equivalent to
a linear RNN, it is expressively more limited in the temporal
dimension. Therefore, we propose a model combining the MH-
SSM with attention by simply inserting a pre-norm bidirectional
block prior to the self-attention unit in the transformer architec-
ture, referred to as the Stateformer, see Figure 4.

4. Experimental Evaluation
4.1. Data

We evaluate the proposed models on the LibriSpeech dataset
[31] consisting of about 960 hours of speech data sampled at
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Figure 3: Filterbanks are passed on to a linear layer with 128D
outputs. These are fed through 2 smaller MH-SSM residual
blocks followed by a time reduction (TR) layer which splices
every two frames. This is again followed by another set of MH-
SSM blocks and a TR layer resulting in 512D features with an
effective 40ms frame rate.

16kHz. SpecAugment [32] and speed perturbation [33] were
used for data augmentation. We used a sliding window of 25ms
with a 10ms frame shift to extract 80-dimensional filterbank.

4.2. Baselines

All speech recognition models were based on the transducer
framework [30], which has three components: encoder, predic-
tor and joiner. We train various transducers by keeping the pre-
dictor and joiner fixed, and compare various Transformer [34],
Conformer [11] and S4 [22] encoders against the proposed ap-
proaches. The 80-dim input feature was first linearly projected
to a dimension of 128. Furthermore, we explore the style of
subsampling frontends by comparing:
(a) Time Reduction Layers (TR): Splicing 128-dim frames to

512 dimensions, reducing the sequence length by 4x.
(b) Convolutional Layers (CNN): 2D convolutional network

with a total stride of 4 and 512 output channels [35, 11].
(c) Multi-scale Layers (MS): Proposed multi-scale frontend

which intertwines MH-SSM blocks with TR layers, reduc-
ing the sequence length by 4x.

4.3. Implementation Details

Baseline and proposed models are implemented using an ex-
tension of the Fairseq framework [36]. The encoder model di-
mension was set to 512 and kept fixed for all experiments; the
model size was controlled by the number of encoder layers. The
baselines used the convolutional frontend and consists of 20-
36 S4, Transformer or Conformer blocks with 8 self-attention
heads (not applicable to S4), and a feed-forward net dimension
of 2048. Different to [11], our Conformer baseline did not use
a macaron style block as it was not found useful and had the
convolutional module prior to the attention with a kernel size
of 31. The prediction network consisted of a three-layer 512-
dimensional LSTM with layernorm and dropout. Both the en-
coder and predictor outputs were projected to 1024 dimensions
before being fed into an additive joiner with a single linear layer
of |Y| = 4097 sentence-piece [37] output units. Similar to the
S4 baseline, our proposed MH-SSM simply replaced the self-
attention layer of the transformer; the configuration of this layer,
such as the number of stacks, heads, use of inter-head gating and
frontend subsampler are investigated. The Stateformer uses the
same setup as the transformer combined with the best MH-SSM
configuration. Large (greater than 100M parameters) baselines

and proposed models were also trained using auxiliary classi-
fiers similar to [38], in which intermediate encoder outputs are
trained to predict frame labels every 4 layers.

All models used the Adam optimizer [39] with a learning
rate linearly warming up to the peak value in 10k iterations,
fixed until the 60th epoch and thereafter, exponentially decayed
by a factor of 0.96 each epoch. A dropout value of 0.10 is used
in all encoders and 0.30 in all predictors and the batch size is
set based on occupying maximal GPU memory. All models
were trained up to 200 epochs using 32 NVIDIA A100 GPUs.
Hyperparameters and level of checkpoint averaging were based
on the development set.

5. Results & Discussion
5.1. Main Results

Table 1 shows the word error rate performance of our models of
the large configuration on LibriSpeech with our baselines and
state-of-the-art models including ContextNet [40], Transformer
[34], Conformer [11, 41] and the recently introduced Branch-
former [12] and E-Branchformer [13]. No external language
model was used.

Table 1: WER% performance of baseline and proposed models
on Librispeech compared with best results found in the litera-
ture (no external language model). At approximately 140.3M
parameters, our attention-free MH-SSM model is competitive
with ContextNet and outperforms many other reported models.
At 139.8M parameters, our Stateformer is competitive with the
best-reported Conformer and outperforms all other models.

Model Params dev test
clean other clean other

AED
Branchformer [12] 116.2M 2.2 5.5 2.4 5.5
E-Branchformer [13] 148.9M – – 2.14 4.55
Conformer [13] 147.8M – – 2.16 4.74

Transducer
Transformer [34] 139M – – 2.4 5.6
Transformer [42] 160M – – 2.2 4.7
ContextNet [40] 112.7M 2.0 4.6 2.1 4.6
Conformer [11] 118.8M 1.9 4.4 2.1 4.3
Conformer [41] ≃120M 2.0 4.7 2.2 4.8

Baselines
S4 36L 129.6M 2.21 5.63 2.41 5.68
Transformer 36L 129.0M 2.16 5.28 2.32 5.34
Conformer 24L 133.7M 1.95 4.84 2.21 5.04

Proposed Models
MH-SSM 32L 140.3M 1.80 4.96 2.01 4.61
Stateformer 25L 139.8M 1.76 4.37 1.91 4.36

The performance of our (attention-free) multi-head state
space model (MH-SSM) is able to achieve competitive results
of 1.80/4.96/2.01/4.61 outperforming existing transformer
transducers and competing with ContextNet. It also signifi-
cantly outperforms the original S4 which is unable to outper-
form transformer baselines. Furthermore, this model is able to
outperform one of the Conformer transducers [41] on all but
dev-other. The Stateformer further pushes the performance by
combining MH-SSM blocks with self-attention. The achieved
WERs of 1.76/4.37/1.91/4.36 are highly competitive outper-
forming essentially all models with one exception, the origi-
nal Conformer. In this case, the Stateformer is able to outper-
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Figure 4: Stateformer: Bidirectional state space augmented transformer block. It simply has an additional block prior to the attention
unit with a bidirectional MH-SSM. The pure MH-SSM architecture is similar but without the self-attention block.

form the Conformer in all but dev and test-other for which it
is competitive. Overall, this demonstrates the power of multi-
head state space models both as a standalone model and when
combined with self-attention blocks.

5.2. Ablation Studies

5.2.1. Baselines

Table 2 reports the WER performance of smaller baseline mod-
els. Overall we can observe that the attention-free S4 (SSM
baseline) can outperform the transformer with a time reduction
frontend. With a convolutional frontend the larger Conformer is
best followed by the transformer. The transformer benefits more
from a convolutional frontend as it complements self-attention.
Models with convolutional aspects, Conformer and S4 (which
can be seen as a variable length convolution) benefit less.

Table 2: Baseline S4, Transformer and Conformer WER% per-
formance with various frontends (FE). With a CNN frontend, a
larger Conformer is best followed by the Transformer.

Model Params FE dev test
clean other clean other

S4 20L 78.1M TR 2.45 6.88 2.71 6.72
78.8M CNN 2.36 6.60 2.67 6.47

Transformer 20L 76.7M TR 2.96 7.09 3.05 7.18
77.5M CNN 2.45 5.82 2.62 6.15

Conformer 20L 91.9M TR 2.17 5.54 2.43 5.45
92.7M CNN 2.04 5.31 2.26 5.37

5.2.2. Stacking SSM Layers

There are a number of differences between a standard S4 and the
MH-SSH block, specifically, the stacking of SSM layers within
a single residual block. Table 3 shows the contrast between
stacking SSM layers within a residual block versus opting for
deeper models. Stacking was found marginally better, and more
importantly, allows the model to scale to larger sizes.

Table 3: Impact of stacking state space layers in a residual
block. Stacking 2 layers was found to be marginally more ef-
fective than increasing the number of layers.

Layers Params Stack dev test
clean other clean other

16 56.8M 1 2.57 7.13 2.79 6.86
66.3M 2 2.36 6.88 2.52 6.59

20 67.6M 1 2.42 6.92 2.67 6.56

5.2.3. Number of Heads and IHG

Next, we compare the number of SSM heads and the impact of
using IHG instead of standard GLU activations, see Table 4. All

of the MH-SSM models use a simpler TR frontend. At 74.7M
parameters, the 4H with IHG model is able to outperform the
20L transformer baseline and rival the one with CNN frontend.
Overall, the table shows the effectiveness of combining multi-
head with head gating.

Table 4: Ablation study investigating the number of heads and
use of IHG in the MH-SSM model. All models use the TR fron-
tend and have 74.7M parameters.

#H IHG dev test
clean other clean other

2 ✗ 2.33 6.92 2.58 6.49
4 ✗ 2.23 6.74 2.52 6.46
2 ✓ 2.13 6.81 2.47 6.44
4 ✓ 2.19 6.38 2.42 6.25
8 ✓ 2.17 6.49 2.43 6.20

5.2.4. Multi-Scale Frontend

Using the best found MH-SSM from the previous section with
4 heads and IHG enabled, we evaluate the impact of including
a multi-scale frontend, see Table 5. With a minor increase of
4.5M parameters, the performance of the MS + MH-SSM sys-
tem is significantly better. The corresponding Stateformer fur-
ther improves performance by a notable margin, outperforming
the Conformer baseline in Table 2.

Table 5: Simple comparison of TR vs MS frontend (FE) for the
MH-SSM model; including a final Stateformer based on the best
found MH-SSM model.

Model Params FE dev test
clean other clean other

MH-SSM 16L 74.7M TR 2.19 6.38 2.42 6.25
79.2M MS 2.14 6.12 2.39 5.99

Stateformer 16L 96.1M MS 2.06 5.01 2.27 5.07

6. Conclusions
We proposed a multi-head state space model (MH-SSM) for
the audio-encoder of transducer-based speech recognition. Par-
allel heads of SSMs, together with a novel inter-head gating
mechanism was shown highly effective yielding a new class of
high-performing models. In addition, we combine MH-SSM
blocks and self-attention to form a new type of transformer
architecture–the Stateformer. On the LibriSpeech speech recog-
nition task, the proposed MH-SSM outperforms transformer
baselines by a large margin. Furthermore, the Stateformer fur-
ther improves the performance, achieving state-of-the-art per-
formance without external language models.
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