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Abstract
Predicting the presence of major depressive disorder (MDD)
using speech is highly non-trivial. The heterogeneous clinical
profile of MDD means that any given speech pattern may be
associated with a unique combination of depressive symptoms.
Conventional discriminative machine learning models may lack
the complexity to robustly model this heterogeneity. Bayesian
networks, however, are well-suited to such a scenario. They
provide further advantages over standard discriminative model-
ing by offering the possibility to (i) fuse with other data streams;
(ii) incorporate expert opinion into the models; (iii) generate
explainable model predictions, inform about the uncertainty of
predictions, and (iv) handle missing data. In this study, we ap-
ply a Bayesian framework to capture the relationships between
depression, depression symptoms, and features derived from
speech, facial expression and cognitive game data. Presented
results also highlight our model is not subject to demographic
biases.
Index Terms: Depression, Bayesian Networks, Fusion, Knowl-
edge Integration, Missing Data, Fairness

1. Introduction
The healthcare sector is in urgent need of better tools to tackle
the challenges of major depressive disorder (MDD) efficiently
and effectively. Depression assessments are still based on self-
report questionnaires which are prone to bias [1] and where the
variability between individuals’ interpretation of questionnaire
items is high [2]. Furthermore, clinical interviews and observa-
tion are naturally influenced by the clinician’s experience and
acumen [3]. Collectively, this means identifying the correct di-
agnosis and treatment can take many years, with some studies
finding untreated depression rates as high as 77% [4]. There is
an immediate need for a clinical decision support tool offering
objective depression metrics, as easily accessible and reliably
trackable as physical health ones (e.g. blood test markers). Ad-
vances in digital health and phenotyping technologies are there-
fore being considered integral to improving MDD-associated
clinical pathways [4].

In recent years, there has been an acceleration in the number
of papers centred around the application of machine learning in
the domain of digital health. These works include analyses of
speech, facial expressions and cognitive assessments to provide
objective measurement criteria to aid in MDD diagnosis [5, 6].
A potential shortcoming of such works, however, is that they
have almost exclusively been focused on supervised modelling
paradigms learning how to partition data based on subjective
depression scales, such as the 8-item Patient Health Question-
naire (PHQ-8; [7]), thereby also becoming subject to the same
concerns around self-report subjectivity. Moreover, they mainly

utilise large multivariate feature spaces and deep learning mod-
els which lack transparency regarding how their decisions are
being made [8]. Alongside this lack of explainability, such ap-
proaches also lack the ability to incorporate expert opinion into
the model and are unable to handle missing data robustly.

Bayesian Networks (BN) offer a natural framework to sat-
isfy all the above requirements, which are common in health-
care modelling. Indeed, a few recent works have successfully
adopted BNs to tackle mental health modelling problems; for
example, [9, 10]. However, the predictors in these approaches
have been simple demographics, biological or environmental
factors, as opposed to rich multimodal datasets that can include
audio and video data. Only a very small number of works have
explored the use of BNs for detecting depression from speech
e. g. [11, 12]. These works, however, are focused on the classifi-
cation of depression severity; they do not consider joint classifi-
cation with symptoms or the inclusion and effects of confound-
ing factors.

In this study we propose a novel BN model for joint MDD
and depression symptoms classification given a multimodal fea-
ture set containing speech, facial expression and cognitive game
data gathered at thymia [13]. We then present a range of exper-
iments demonstrating the model’s performance under different
realistic use case scenarios, including varying degrees of miss-
ing data and integration of expert knowledge.

The main novel contribution of this work is a methodol-
ogy for incorporating speech and video data in a BN model that
achieves strong performance in MDD classification. We also
highlight its potential as a clinical decision-support tool by pro-
viding results for individual core MDD symptoms and give a
detailed breakdown of performance according to key sociode-
mographic factors.

2. Experimental Corpora
This section describes the collection and preprocessing of the
data used in our expirements.

2.1. Dataset

We trained and validated our models on our data collected in-
house. This data collection received ethical approval from the
Association of Research Managers and Administrators. Pub-
licly available speech-depression datasets such as the Audio-
Visual Depressive (AViD) corpus [14] and Distress Analysis In-
terview Corpus (DAIC) [15] do not have the required meta-data
to support our stated analytical aims. Further, these data have
been in the public domain for 10 years so subject to concerns
relating to overfitting and multiple hypothesis testing.

The experimental data used in this study consist of 1,336
English-speaking participants who performed a series of short
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Table 1: Sociodemographic, depression and activity distributions in the experimental data.

Group Gender Age Country Device Cumulative Activity Time
Male Female < 36 ≥ 36 UK US Phone PC Paragraph Image n-Back

PHQ-8 ≥ 10 135 220 215 140 202 153 19 336 4:09:55 5:23:22 ”1 day, 19:15:27”
PHQ-8 < 10 496 485 574 407 424 557 42 938 14:15:52 19:10:56 ”5 days, 21:20:47”

online activities within a single session on our Research Plat-
form [13] 1 using their own personal devices (Table 1). We pre-
viously presented a portion of this dataset with a smaller number
of participants and a focus on audio (acoustic, prosodic and lin-
guistic) and cognitive data gathered from two thymia activities,
i.e. an Image Description Task and the n-Back Task [16], as
well as individual PHQ-8 items; see [13]. In the present study,
we expand the number of data modalities to include video data
recorded during the Image Description Task, as well as addi-
tional audio data gathered during a Paragraph Reading Task.
Additionally, we include information on the type of personal
device that was used to perform the activities.

2.2. Data Availability

Due to licensing and IP considerations, we are not at this mo-
ment making our dataset generally publicly available. However,
we are open to partnering with research institutes and individual
academics including data sharing upon request.

2.3. Data Collection Activities

We focus on data gathered through three data collection activi-
ties: the n-Back Task, the Image Description Task and the Para-
graph Reading Task. The first two activities have been previ-
ously described in detail in [13]. The Paragraph Reading Task
required participants to read aloud a short story (Aesop fable
“The North Wind and the Sun” widely used within phonetics
[17]) while their voice was being recorded via their device’s mi-
crophone. Herein we abbreviate the activity names to “n-Back”,
“Image”, and “Paragraph”.

2.4. Data Selection

A total of 1,898 participants enrolled to the study. Participants
were excluded from the dataset if either of these applied: (1)
they did not complete all three data collection activities; (2)
their recordings were corrupted by technical problems (cam-
era/mic malfunctioning); (3) they did not comply to the tasks
(did not speak in the speech tasks). On the basis of these crite-
ria, 1,336 participants were selected.

2.5. Data Preprocessing

Audio recordings from the speech eliciting activities were con-
verted to single-channel wave files at 16kHz sampling rate using
FFmpeg software. Speech tokens were then extracted from the
audio files using Amazon Web Services (AWS) Speech-To-Text
service Amazon Transcribe.

1The thymia Research Platform allows the hosting of complex, re-
mote, multimodal studies on a smart device. During various activities
(e.g. questionnaires, cognitive games etc.), data from the device’s cam-
era, keyboard, mouse/trackpad and/or touch screen can be streamed to
a secure backend. The platform is fully HIPAA-compliant, 2018 EU
GDPR-compliant, is ISO27001-certified and NHS Toolkit-compliant.

2.6. Features

Data from the three activities was processed to extract a total
of 322 features which included: 8 cognitive features (n-Back),
97 video features (Image), 88 extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS) acoustic and prosodic fea-
tures [18] (from both Image and Paragraph), 24 linguistic fea-
tures (Image), as well as an additional curated set of 17 fine-
grained acoustic features (Paragraph). Details on the cognitive,
eGeMAPS and speech features were previously provided and
can be found in [13].

The video features were extracted using Visage Technolo-
gies Software. The software extracted features related to facial
translation, rotation and gaze in the 3D space, action units and
emotions. An estimated face scale was also provided to nor-
malise values, allowing for changes in a participant’s distance
from the screen and camera.

The fine-grained acoustic features consist of summary
statistics of the formant trajectories extracted from specific
voiced audio segments of the Paragraph audio recordings. We
used audio segments corresponding to three sets of words cho-
sen to isolate the following vowel sounds [19]: /i/ (‘wind’,
‘which’, ‘he’, ‘his’, ‘him’), /u/ (‘should’, ‘could’, ‘took’, ‘two’),
/a/ (‘hard’, ‘last’, ‘and’, ‘at’).

3. Bayesian Network Model
3.1. Model Definition

Bayesian Networks (BNs) are probabilistic graphical models
that specify the joint distribution by defining a set of condi-
tional independence rules that can be easily mapped to a Di-
rected Acyclical Graph (DAG) [20]. Our BN model is com-
posed of four groups of variables: CONFOUNDS, CONDITION,
SYMPTOMS and ACTIVITY measures (Figure 1).

The CONFOUNDS group includes age and gender as de-
mographic variables, and a third variable indicating the type
of personal device used by the participant to perform the ses-
sion on our Research Platform. The age variable is modelled
as a categorical distribution with four categories representing
four age groups (i.e. 18-25, 26-35, 36-45, 46-100), while both
gender and device are modelled as Bernoulli distributions with
categories ‘male’/‘female’ and ‘smartphone’/‘PC’ respectively.
In the following we use A ∈ {0, 1, 2, 3}, G ∈ {0, 1} and
D ∈ {0, 1} to indicate the age group, gender and device re-
spectively.

The CONDITION variable indicates the presence (PHQ-8 ≥
10) or absence (PHQ-8 < 10) of depression. To capture the vari-
ation of depression incidence across age groups and genders, we
model the condition C as a Bernoulli distribution:

p(C|A,G) = Ber(C|logistic(fc(A,G))) (1)

where
fc(A,G) = ωc,0 + ωc,aA+ ωc,gG. (2)

The SYMPTOM variables represent the individual PHQ-8
items. In order to simplify the model, each symptom is con-
verted from its original 4-point scale to a binary scale indicating
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Figure 1: Overview of the proposed multimodal Bayesian net-
work model.

‘low’ and ‘high’ symptom levels. The symptom-specific bina-
risation thresholds are calculated from a logistic regression of
each individual symptom on the condition variable. In order to
capture inter-symptom conditional dependencies, the symptom
variables are embedded in an inter-symptom DAG estimated us-
ing the DirectLiNGAM graph discovery algorithm [21]. Each
binary symptom variable Ss, with s ∈ {0, 1, ..., 7}, is modelled
as a Bernoulli distribution:

p(Ss|A,G,C,PsPsPs) = Ber(Ss|logistic(fs(A,G,C,PsPsPs)))
(3)

where variables in bold are vectors, PsPsPs is a column vector
of ks parent symptoms of Ss as specified by the inter-symptom
DAG and

fs(A,G,C,PsPsPs) = ωs,0 + ωs,aA+ ωs,gG +

ωs,cC +ωs,pPsωs,pPsωs,pPs

(4)

with ωs,pωs,pωs,p ∈ Rks . In the following we use SSS to indicate the
column vector of all binary symptoms.

The ACTIVITY measures are derived from the feature sets
described in the previous section by applying two processing
steps. First, standard rescaling is applied to all features individ-
ually. Second, supervised PCA [22] is applied to each feature
set independently using the condition variable as target. The
first two principal components of each feature set are then se-
lected, yielding a total of 16 activity measures (2 from N-Back,
10 from Image, 4 from Paragraph). Each activity measure vari-
able Mm, with m ∈ {0, 1, ..., 15}, is modelled as a Gaussian
distribution

p(Mm|A,G,D,C,SSS) = N (Mm|fm(A,G,D,C,SSS), σ2
m)

(5)
where

fm(A,G,D,C,SSS) = ωm,0 + ωm,aA+ ωm,gG +

ωm,dD + ωm,cC +ωm,sSωm,sSωm,sS
(6)

0.6 0.7 0.8
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Figure 2: BN model performance in the joint prediction of con-
dition and symptoms given the observation of other sets of vari-
ables. Averages (with 95% CI) across 5 cross-validation test
folds are shown. Dashed lines highlight model performances
when all measures are observed.

with ωm,sωm,sωm,s ∈ R8. In the following we use MMM to indicate the
column vector of all activity measures.

The full BN model describing the joint probability distribu-
tion over all the variables described above is then given by

p(MMM,SSS,C,A,G,D) =
15∏

m=0

p(Mm|A,G,D,C,SSS)×

7∏

s=0

p(Ss|A,G,C,PsPsPs)×

p(C|A,G)×
p(A)× p(G)× p(D).

(7)

3.2. Model Implementation and Training

We implemented the BN model using the probabilistic program-
ming library NumPyro (version 0.11.0) [23] and Python 3.9.15.
Model training was performed via the Markov Chain Monte
Carlo (MCMC) inference of model parameters using the No-
U-Turn sampler (NUTS) algorithm in NumPyro, with 4 Markov
chains and 1000 samples per chain. We used the following prior
distributions for the model parameters: Dirichlet(K = 4, α =
1) for the group frequencies of the age variable; Beta(α =
1, β = 1) for the Bernoulli probabilities of the gender and de-
vice variables; N (µ = 0, σ = 1) for all ω parameters in Equa-
tions (2), (4) and (6); LogNormal(µ = 0, σ = 1) for the σm

parameters in Equation (5).

3.3. Model Evaluation

We performed a stratified 5-fold cross-validation to evaluate
model performance. The same proportion of gender, age groups
and PHQ-8 distribution was kept across the training and test sets
for each fold. We use the area under the receiver operating char-
acteristic curve (ROC-AUC) as our evaluation metric.
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Table 2: Mean and SD AUC of our BN and RF models. For
BN we add results when slicing the data for gender, age and
country.

Model Population Target
Condition Symptoms

Mean SD Mean SD

BN Overall 0.705 0.029 0.662 0.026
Female 0.700 0.055 0.668 0.039
Male 0.705 0.042 0.648 0.027
UK 0.660 0.075 0.613 0.050
US 0.746 0.019 0.707 0.027

Age < 36 0.693 0.036 0.644 0.034
Age ≥ 36 0.726 0.034 0.687 0.017

RF Overall 0.714 0.027 0.665 0.028

3.4. Benchmark model

In order to benchmark the BN model, we additionally trained a
multi-output Random Forest classifier (RF) which received the
same 16 input activity measures used by the BN model. The
model had 500 trees with maximum depth of 5 and was imple-
mented using the scikit-learn package (version 1.0) [24]. The
maximum depth was set via grid search over [1, 5, 10, 15, 20]
using a 5-fold cross-validation.

4. Results and Discussions
Given the generative nature of a BN model, any of its variables
or groups of variables can be chosen as targets in a prediction
task. Of particular interest is the task of predicting CONDITION
and SYMPTOMS given the observation of other variables in the
model. We performed a set of experiments to evaluate the model
performance in this joint prediction task under several realistic
scenarios (Figure 2). Overall, the experiments showed an in-
crease in predictive performance with the amount of observed
variables in the model, and a generally higher performance for
CONDITION than SYMPTOMS. When all ACTIVITY measures
are available, the average ROC-AUC is above 0.7 for CONDI-
TION and 0.66 for SYMPTOMS.

Additionally, we evaluated the performance when only sub-
sets of ACTIVITY measures are available as input to the model
(Figure 2). These experiments correspond to common real-life
scenarios in which a participant does not perform the full set of
activities or opts out of recording. This set of experiments re-
vealed an increase in model performance as more activities are
observed, with paragraph measures having the strongest posi-
tive impact.

Finally, we performed a set of experiments where all AC-
TIVITY measures plus one SYMPTOM are observed (Figure 2).
This simulates the scenario in which reliable information about
the presence or absence of a symptom is available to the clin-
ician using the model. In this scenario, we observed that the
predictive performance further improves for both CONDITION
and the other unknown SYMPTOMS.

To assess the robustness of the model for potential demo-
graphics biases, we also performed a segmentation of the per-
formance metrics across gender, age and country (Table 2). The
small differences across the demographics splits we considered
suggest that our results are not biased.

When benchmarking our BN model against a RF classifier,
we can see that both have similar performances (Table 2). This
could be viewed as a limitation of our model; however, it is

patient control
0.0

0.2

0.4

0.6

0.8

1.0

p(C)

input
A
B
C
D

Figure 3: Raw model predictions of condition probability in two
sample participants, one patient and one control, for four sets of
inputs: A = confounds, B = confounds + n-back, C = confounds
+ n-back + paragraph, D = confounds + n-back + paragraph
+ sleep symptom. Error bars denote 95% credible intervals.

worth considering that we needed only a single BN to perform
multiple predictions, whereas separate RF models need to be
trained for each inference task. Furthermore, although the per-
formance of our BN model is below that of other approaches in
the literature, we believe that our results are a true reflection of
what could be expected from a dataset of this size once biases
have been minimised [25].

Finally, the main purpose of our BN model is to serve as a
support tool for clinical decision-making. The model allows for
(i) the integration of multimodal information alongside speech;
and (ii) the clinician using it to provide their expert knowledge.
Given its ability to generate predictions despite missing infor-
mation, this model naturally lends itself to be used as part of
an iterative screening process. For example, the clinician may
decide to administer only a subset of activities to a patient, then
consult the model predictions and decide whether other infor-
mation may be needed to support a diagnosis, subsequently ad-
ministering additional activities, asking the patient about their
sleep patterns or investigating other symptoms (Figure 3).

5. Conclusions
This work represents a proof-of-concept for validating a BN
model, demonstrating its performance as a robust speech-based
MDD prediction tool. We also highlight the potential of this
model under different real-world operating conditions and as-
sess it for potential biases in core sociodemographic factors. A
limitation of the current model is the reduced set of confounding
variables. Future research will explore a larger set of confounds,
such as life events that could affect mood (e.g. loss or change
of jobs) or health problems that could affect voice (e.g. hav-
ing a cold). An additional limitation of the current model is the
lack of time dynamics, which limits its scope to static one-off
predictions.

In future work, we aim to collect a longitudinal dataset and
to expand the model to a dynamic BN, in order to enable its ap-
plication to other clinical reasoning tasks where time is a crit-
ical factor, such as prognosis. Further steps will be to explore
and document model interpretability, as well as to investigate
specificity to MDD by studying control datasets of e.g. bipolar
disorder or adjustment disorder.
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