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Abstract
Huge progress has been made in self-supervised audio repre-
sentation learning recently, and transformer based downstream
model using Multi-head Self-Attention and Feed-Forward Net-
work (MSA-FFN) as the basic block delivered promising trans-
fer performance on downstream speech tasks. However, it is un-
clear whether the traditional transformer architecture is appro-
priate for downstream transfer. In this paper, we adopt a block
architecture search strategy (BAS) to explore this issue, taking
speech emotion recognition as an example. We found that 1)
it is crucial to incorporate an FFN-like representation learning
module without MSA design in the early stages of the down-
stream model; 2) with the use of self-supervised features, it is
good enough to use a simple FFN for the downstream task. This
work can serve as a source of inspiration for all other down-
stream speech tasks that utilize self-supervised features.
Index Terms: self-supervised features, downstream transfer,
speech emotion recognition, block architecture search

1. Introduction
Self-Supervised Learning (SSL) is a form of unsupervised
learning that allows the network to learn universal represen-
tations from a large amount of unlabeled data. SSL can ex-
tract more salient and robust features that is useful in improving
the performance of downstream tasks [1, 2]. The generaliza-
tion ability of representations extracted by using a pre-trained
model help decrease the urgency of searching for hand-crafted,
engineered features [3]. Thus, many self-supervised pre-trained
models have been developed for natural language processing
and computer vision, for example, BERT [4] and MAE [5]. Re-
cently, SSL has also achieved impressive success in the field of
audio and speech processing[3]. Excellent self-supervised pre-
trained models such as Wav2vec [6], Hubert [7] and WavLM
[8] have emerged.

In the field of Speech Emotion Recognition (SER), due
to the complexity of human emotion, as far as we know, cur-
rently there is no such a hand-crafted feature type that is widely
accepted as an effective emotion representation. Some re-
searchers generally adopt traditional features such as fundamen-
tal frequency [9], MFCC [10] and speech spectrogram [11] for
SER. Given the success of self-supervised learning, researchers
have also tried to use self-supervised features for SER, which
has demonstrated superior performance to traditional features
[12, 13]. The Superb [14] shows that various frozen self-
supervised encoders achieve high performance on SER, the
WavLM large model stood out with an accuracy of 70.62% on
the IEMOCAP dataset [15]. Fine-tuning the pre-trained model
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Figure 1: The difference between two ways to extract features.
(a) represents the principle of feature extraction in traditional
transformer. (b) represents the uncertainty of feature extraction
using a self-supervised model.

is a common approach to leverage self-supervised learning for
downstream tasks. Wang et al. [16] conducted experiments
on fine-tuning the transformer encoder part of a SSL model,
comparing entire fine-tuning with partial fine-tuning. The re-
sults showed that partial fine-tuning outperformed entire fine-
tuning to some extent. The authors suggested that entire fine-
tuning may lead to overfitting due to the limited amount of data
available for fine-tuning. Although fine-tuning upstream self-
supervised models can improve performance on downstream
tasks, it requires a large amount of downstream training data
and is computationally expensive. Therefore, this paper focuses
on exploring how to better perform downstream transfer when
the parameters of the self-supervised model are fixed.

Downstream transfer via a downstream model is an effec-
tive approach to enhance the adaptability of self-supervised fea-
tures to downstream tasks. Pepino et.al. [12] used pointwise
convolutional layer and LSTM as downstream model for SER.
Li et al. [17] proved the advantages of using the transformer
model as a downstream model for speech, text and multimodal
emotion recognition when using self-supervised features. Chen
et al. [18] proposed a hierarchical transformer with neighboring
attention with self-supervised features and achieved high per-
formance. The components of each basic block of traditional
transformer are ordered as Multi-head Self-Attention (MSA) is
applied first, followed by Feed-Forward Network (FFN) pro-
cessing. As shown in Fig. 1(a), MSA can enable each token in
the sequence to interact information with tokens in other loca-
tions to generate new token vectors. By using FFN after MSA,
non-linear transformation can be performed on each token with
global interaction information to further extract task-related in-
formation. While the self-supervised model can extract gen-
eral representations with global information through unsuper-
vised pre-training (i.e., as shown in Fig. 1(b), it remains un-
clear whether the pre-defined MSA-first setting is suitable for
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Figure 2: An overview of the BAS framework. BAS explores a layer-wise search space that each layer of the super net can choose a
different block from three candidate blocks. The network parameters and the sampling parameters are trained together. The downstream
model architecture is then sampled from the trained super net. The red arrow flow denotes an example sampled architecture.

the downstream model. Thus, considering that each token of
self-supervised features already contains context information,
an important question arises: should each token be first mapped
to the task-specific representation space and then exchange task-
related information?

To tackle the above problem, we adopt Block Architecture
Search (BAS) strategy to explore suitable representation trans-
fer way for downstream task (i.e., SER in this work) within a
finite searching space based on transformer encoder. We find
that the MSA-first design, which is the case in a traditional
transformer model, is not optimal when self-supervised pre-
trained features are used. Perhaps representation transfer learn-
ing should be performed as early as possible in the downstream
model. This study may inspire future research on various down-
stream tasks based on self-supervised features. The main con-
tributions of this paper can be summarized as follows:
• We demonstrate that the block architecture search strategy is

effective to search suitable downstream transfer way based
on self-supervised pre-trained features. Though only the
SER task is studied in this paper, this strategy can be easily
adopted for other tasks.

• It is found that putting a task-specific representation projec-
tion at the first place is the key to downstream model. This
can also inspire other downstream speech processing tasks.

2. Methodology
To explore a suitable task-specific downstream transfer way
based on transformer architecture, the basic building block of
the transformer is further decomposed into a MSA sub-module
and a FFN sub-module, which serve different functions. We
employ the block architecture search strategy to choose the suit-
able architecture for each layer block in downstream model,
providing the flexibility to remove either the MSA or FFN sub-
module for downstream transfer. A conceptual overview of the
proposed method can be found in Fig. 3. Details about the
methodology will be elaborated below.

2.1. Preliminaries

Transformer models have achieved superior speech emotion
classification performance. The building block of each layer

Figure 3: A conceptual overview of our method. A sub-module
may be completely removed (e.g. shadowed blocks) from the
downstream model by using the BAS strategy.

in a vanilla transformer [19] consists of a MSA sub-module
and a FFN sub-module. Formally, for an input speech sequence
X = [x1, x2, ..., xN ] where N is the number of speech frames,
and xi ∈ RD where D is the dimension of the features, a single-
head self attention is computed as follows:

headh = Attn(Qh,Kh, Vh) = softmax(
QhK

T
h√

dh
)V (1)

Where Qh, Kh and Vh are usually called the query, key and
value respectively and they are achieved by projecting the in-
puts, i.e., Qh = XWQh , Kh = XWKh , and Vh = XWVh ,
where WQh ,WKh ,WVh ∈ RD×dh . The output of MSA is
computed by concatenating the outputs of single-head self at-
tentions with different projection parameters:

MSA(X) = concat(head1, ..., headH) (2)

Then the outputs of a MSA are fed into a FFN, usually with
two-layers. Skip connections are used to bypass the MSA or
the FFN. In all, each layer in a vanilla transformer performs the
following computation:

layerl = FFN(MSA(X) +X) +MSA(X) +X (3)

2.2. Block Architecture Search Strategy

Designing effective network for the downstream SER task is
challenging since the design space may be very large. To ad-
dress this problem, we construct a layer-wise search space with
a pre-defined fixed macro-architecture which is similar to [20].
In this paper, BAS explores a layer-wise space that each layer of
a transformer can choose a different block. The search process
trains the stochastic super net using SGD to optimize the archi-
tecture distribution. The downstream network architecture are
sampled from the trained distribution under the limited search
space. Fig. 2 provides an overview of the whole strategy. Each
step will be briefly described below. We refer the reader to [20]
for more detailed information.
Search Space. The macro-architecture for the transformer-
based downstream model is pre-defined. Each searchable layer
can choose a different block from the layer-wisesearch space.
As shown in Fig. 2, inspired by the basic building block of a
transformer, the layer-wise search space consists of 3 candidate
blocks, i.e., an original MSA+FNN, an MSA, and a FFN with-
out residual connection. Since this paper is aiming at exploring
the influence of block function on the speech emotion represen-
tations transfer based on self-supervised features, the network
parameters such as the number of neurons and the number of
MSA heads are fixed, and skip connections are not set between
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layers. In summary, the BAS framework in this paper is based
on transformer encoder to explore suitable downstream mod-
els. When the number of layers of the supernet is set to 4, each
searchable layer can choose from 3 candidate blocks, and it con-
tains 34 = 81 possible architectures.
Search Algorithm. It is computationally expensive to find the
suitable block architecture through brute-force enumeration of
the search space. As in [20], the whole search space is rep-
resented by a stochastic super net which has the same macro-
architecture as described, and each searchable layer contains all
the three block candidates in parallel as shown in Fig. 2. Only
one of the candidate block is sampled and executed during the
inference. To make the loss function described in the following
subsection differentiable with respect to the network weights,
as well as to the sampling parameters, the sampling process is
relaxed through the Gumbel softmax trick [20], i.e.

ml,i =
exp[(θl,i + gl,i)/τ ]∑
i exp[(θl,o′ + gl,o′)/τ ]

(4)

where ml,i represents the probability of sampling the ith

block in the lth layer, and gl,i ∼ Gumbel(0, 1) is a random
noise following the Gumbel distribution, θl,i denotes the sam-
pling parameter for ith block at lth layer and τ is a temperature
parameter. Gumbel softmax introduces randomness so that each
candidate block can be selected with a certain probability. The
output of layer-l can be expressed as:

xl+1 =
∑

i

ml,i · fl,i(xl−1) (5)

Where fl,i(·) is the block operation corresponding to ml,i.
In this way, the target loss is directly differentiable to the sam-
pling parameters θl,i. After the super net training is completed,
we can obtain the suitable downstream model architecture by
sampling a candidate block operation with the maximum prob-
ability from the block distribution of each layer.

2.3. Loss Function

By using BAS, the super net is trained in the same way as a nor-
mal neural network and can quickly estimate the performance of
all block architectures in the search space. Since we seek to find
an suitable emotion recognition network architecture based on
self supervised features for downstream transfer, the objective
function of BAS aims to improve the classification accuracy.
Therefore, cross-entropy loss is used to optimize the super net.
Define the ground-truth as y and the final prediction of the super
net F (x), then the cross-entropy loss is computed as follows:

lossce = −
∑

i

yilog(F (xi)) (6)

3. Experiments
3.1. Datasets

The following datasets were used in our experiments.
IEMOCAP [15] is one of the most popular dataset for speech
emotion recognition. As with other researchers [13, 18, 21], the
subset of IEMOCAP, which contains 5531 utterances of angry,
happy (the category excited is re-labeled as happy), sad, and
neutral was used. Experiments are conducted in a leave-one-
session-out cross-validation strategy.
MELD [22] is another dataset used for SER. It consists of
13,708 utterances with seven emotions. The dataset is splitted
into the train, validation and test sets, and the scores on the test
set are reported.

3.2. Self-supervised Features

Hubert is a SSL approach for speech processing that assigns a
masked segment of input speech to a pseudo-label provided by
applying K-means clustering. Hubert learns a combined acous-
tic and language model over the continuous inputs by applying
a prediction loss on the masked regions only.
WavLM is another large-scale SSL model trained with 94k
hours of audio. It aims to solve full stack speech processing
tasks. WavLM jointly learns masked speech prediction and de-
noising in pre-training, enabling the pre-trained model to per-
form well on both automatic speech recognition (ASR) and non-
ASR tasks.

3.3. Experimental Setup

In our experiments, the self-supervised pre-trained upstream
models HuBERT-Large and WavLM-Large were used as fea-
ture extractors. To optimize the parameters of the constructed
super net in BAS, we trained the network for 100 epochs us-
ing the SGD optimizer with the learning rate of 0.005, and the
batch size was set to 32. For the evaluation metrics, we chose
the widely used weighted accuracy (WA) and unweighted accu-
racy (UA) for IEMOCAP, and weighted average F1 (WF1) for
MELD.

3.4. Experiment Results and Analysis

3.4.1. Block architecture search results

To reduce the influence of the number of downstream model
layers on BAS results, we set the number of layers in the super-
net to 3 and 4, respectively, and conducted experiments on the
IEMOCAP and MELD datasets. The search results using BAS
with Hubert-large and WavLM-large are shown in Fig. 4.a and
Fig. 4.b, respectively.

It can be observed that using self-supervised features as in-
put of downstream model, the first layer of downstream block
architecture found in all conditions is always a FFN module,
while other layers always contain the MSA module. According
to the experimental results, we believe that since self-supervised
audio features already contain global interaction information,
and encoding the sequence and capturing interrelationships be-
tween sequences prior to the MSA module could be considered
redundant. In addition, the MSA module is still included in the
later layers, indicating that the MSA module is still indispens-
able. For SER, we analyze that the self-supervised features un-
dergo initial processing through the FFN module, which enables
each token to extract emotion-related information. This pro-
cess facilitates the transfer of the universal representation space
into a emotion-specific representation space. Subsequently, the
MSA module can perform global modeling of all tokens in the
emotion-specific representation space, thereby avoiding redun-
dancy associated with emotion-independent global modeling in
the universal representation space.

3.4.2. Ablation experiments

As the candidates building blocks are decomposed from trans-
formers, we selected traditional transformer models with 4 lay-
ers and 3 layers respectively as baselines for downstream trans-
fer. According to the block architecture searching results of
downstream model in Fig. 4, we know the importance of the
FFN module. It is interesting to see the performance of a simple
FFN (i.e. a 2-layer multi-layer perceptron). Thus a simple FFN
network is also used for comparison. The baseline and BAS
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Figure 4: The downstream model obtained by using the BAS method. (a) and (b) show the downstream architectures of each layer
obtained by using the BAS method with Hubert large model and WavLM large model, respectively.

Table 1: The performances of different architectures with self-
supervised features on IEMOCAP, MELD.

Features Architectures IEMOCAP MELD
WA(%) UA(%) WF1(%)

Hubert

3L-baseline 68.95 70.61 39.12
4L-baseline 68.16 69.61 44.96
simple-FFN 71.57 72.73 44.80
3L-BAS 72.24 73.19 45.08
4L-BAS 72.35 73.35 45.24

WavLM

3L-baseline 70.74 72.09 45.09
4L-baseline 70.08 71.65 45.75
simple-FFN 72.53 73.70 46.25
3L-BAS 73.92 74.22 46.18
4L-BAS 74.03 74.95 47.18

results with different number of layers settings are presented
in Table 1. The results indicate that the FFN-first downstream
model uncovered by BAS outperforms the original transformer
in terms of downstream transfer learning performance, and the
simple FFN as downstream model even overcomes the trans-
former when evaluated on the IEMOCAP dataset. On MELD,
the simple FFN also achieves comparable performance with the
transformer. The results illustrate that an FFN-like epresenta-
tion transfer module works well for downstream transfer, and
the number of parameters of the FFN is much less than that of
the transformer and thus the FFN requires much less compu-
tation. The 4-layer downstream model obtained by using the
BAS achieves 74.03% WA and 74.95% UA on IEMOCAP, and
47.18% WF1 on MELD, which indicate that BAS produces the
best results under different settings.

3.4.3. Comparison to previous methods

Table 2 shows the comparison results between the BAS method
and previous speech emotion recognition systems on the two
datasets. As can be seen, BAS-selected model achieves state-
of-the-art performance. Specifically, on IEMOCAP, WA is
4.23% better than previous results and UA improvement is
3.9%. When evaluated on MELD, BAS-selected model also ob-
tains SOTA result of 47.18% WF1. These results demonstrate
the effectiveness of the method.

Table 2: Results of the BAS and previous published models on
both datasets.

Dataset Methods WA(%) UA(%)

IEMOCAP

[Guo et al.,2021] [21] 61.32 60.43
[Chen et al.,2022] [18] 62.90 64.50
[Li et al.,2022] [17] 67.99 68.24
[Zou et al.,2022] [13] 69.80 71.05
BAS+Hubert 72.35 73.35
BAS+WavLM 74.03 74.95

Dataset Methods WF1(%)

MELD

[Lian et al.,2021] [23] 38.20
[Vishal et al.,2022] [24] 39.63
[Chen et al.,2022] [18] 41.90
[Hu et al.,2022] [25] 42.72
BAS+Hubert 45.24
BAS+WavLM 47.18

4. Conclusion
Our exploration has demonstrated that it is important to design
FFN-like representation transfer function module projecting the
task-independent self-supervised features into a task-specific
space at the beginning of the downstream transfer process. In
previous work, researchers generally focus on module enhance-
ment, while we explore how to perform suitable downstream
transfer for self-supervised features. When evaluated in the field
of SER, models constructed by using BAS achieves new SOTA
results. We hope this methodology will be helpful for the model
design of other downstream tasks such as speaker recognition.
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