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Abstract
Chinese Automatic Speech Recognition (ASR) error correction
presents significant challenges due to the Chinese language’s
unique features, including a large character set and borderless,
morpheme-based structure. Current mainstream models often
struggle with effectively utilizing word-level features and pho-
netic information. This paper introduces a novel approach that
incorporates a dynamic error scaling mechanism to detect and
correct phonetically erroneous text generated by ASR output.
This mechanism operates by dynamically fusing word-level fea-
tures and phonetic information, thereby enriching the model
with additional semantic data. Furthermore, our method im-
plements unique error reduction and amplification strategies to
address the issues of matching wrong words caused by incorrect
characters. Experimental results indicate substantial improve-
ments in ASR error correction, demonstrating the effectiveness
of our proposed method and yielding promising results on es-
tablished datasets.
Index Terms: Chinese ASR error correction, dynamic error
scaling mechanism, word-level feature fusion, phonetic infor-
mation

1. Introduction
Automatic speech recognition (ASR) has become a widely used
technology for transcribing spoken language into text. How-
ever, ASR systems are only sometimes accurate and often make
errors in recognizing spoken Chinese. Text error correction
techniques have emerged as effective means to address pho-
netic errors in the text output of ASR models[1, 2, 3, 4]. Sev-
eral challenges make Chinese language error correction partic-
ularly difficult. Firstly, the Chinese character set is relatively
large, with 3,500 commonly used characters and around 420
pronunciations[5], requiring more comprehensive error correc-
tion methods. Secondly, Chinese lacks clear word boundaries
and only uses single words or characters, making it challenging
to detect spelling errors and extract contextual semantics. Fi-
nally, Chinese words are morpheme-based[6] and typically con-
sist of one to four characters, much shorter than English words.
Errors in the phonetic similarity of the semantic center word
in Chinese sentences can greatly impact overall semantic accu-
racy. This poses a challenge for recognizing phonological sim-
ilarity errors with acoustic models, requiring language models
to provide semantic aid.

Recent studies have tackled the problem of error correc-
tion in various ways. One popular approach is to treat it as
a machine translation problem using a sequence-to-sequence
(Seq2Seq)[7, 8] framework. In this approach, misspelled sen-
tences generated by an automatic speech recognition (ASR)
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system are taken as input, and a corrected sentence of the same
length is generated as the output. Researchers have also used
BERT-based[9] models for text correction, generating corrected
characters for all input characters in parallel.

To improve the performance of contextual spelling correc-
tion, efforts have primarily focused on two issues. Firstly, re-
searchers have aimed to enhance the quality of language models
by introducing external word knowledge. For example, some
studies propose incorporating phrase and entity knowledge[10]
for error correction. Additionally, some studies[11] introduced
part-of-speech (POS) features and semantic class features to
enhance the performance of the model, and proposed an aux-
iliary task to predict the part-of-speech sequence of the target
sentence. Other studies[12] have assisted the correction mod-
ule by predicting the correct word segmentation boundaries
from sentences containing misspellings and modifying the in-
put of the embedding layer to incorporate word segmentation
information. Secondly, researchers have explored leveraging
phonetic information for text error correction. Some meth-
ods consider phonological similarities between pairs of char-
acters, achieved through the increased decoding probability of
characters with similar pronunciation or integrating such simi-
larities into the encoding process via graph convolutional net-
works (GCNs[13]). Others utilization involves directly consid-
ering individual character pronunciation, specifically the pinyin.
This approach encodes the pinyin of input characters to pro-
duce additional phonetic information[14] or decodes the pinyin
of target correct characters to serve as an auxiliary prediction
task[15, 16].

However, effective word-level feature fusion remains a
challenge due to the risk of miscorrection caused by typos in-
terfering with word segmentation results. Moreover, existing
models need to more fully exploit the phonetic information of
misspelled characters to ensure accurate predictions.

In this paper, we present a novel approach to text error cor-
rection based on a dynamic error scaling mechanism that over-
comes the limitations of current methods. Our model offers two
significant innovations that improve its performance.

Firstly, we explicitly model external lexical knowledge
through targeted error reduction and amplification strategies.
Unlike previous models that may overcorrect valid tokens or
miss errors due to a lack of word-level information, our model
prioritizes possibly wrong tokens during encoding and fixes po-
tentially valid tokens during generation to avoid overcorrection.

Secondly, our model leverages word-level pinyin infor-
mation to identify phonetic candidates instead of relying on
character-based matching. However, character-based matching
can lead to incorrect candidates, so we introduce a dynamic
error scaling mechanism to more accurately identify related
words. This approach allows us to explicitly leverage phonetic
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Figure 1: Chinese ASR error correction model based on dynamic error scaling mechanism

information and improve the accuracy of our model.
We put forth an efficient and straightforward text error cor-

rection approach in this paper. Our model, trained on the
extensively used benchmark datasets, SIGHAN2013-2015[17,
18, 19], surpasses existing baselines when evaluated on the
SIGHAN2015 test set, proving its competitiveness. One of the
significant attributes of our approach is its simplicity compared
to other sophisticated methods prevalent in the field. The ef-
fectiveness and robustness of our model are further exemplified
through our comprehensive ablation study.

We highlight three major contributions to the field of text
error correction in our work:

1. We present a unique dynamic error scaling mechanism adept
at addressing word-level errors in erroneous texts.

2. We put forward a bi-directional 2-gram pinyin match that ac-
curately harnesses the phonetic information of words, thus
helping to identify plausible corrections.

3. Our model’s superior performance over the existing baselines
on the SIGHAN2015 test set demonstrates the effectiveness
and competitiveness of our proposed methodology.

2. Method
In this section, we delineate our proposed method, providing
its implementation details and model structure (refer to Figure
1). Our approach comprises a dynamic error scaling mecha-
nism and a correction module, both contributing uniquely to the
detection and rectification of errors.

The dynamic error scaling mechanism implements tar-
geted error reduction and amplification strategies, while a bi-
directional 2-gram pinyin match extracts the phonetic informa-
tion of words. Our model processes both incorrect character
sentences Xc and corresponding word-matching sequences Xw

as input. After Xc is fed into the model, Xw is procured via the
error scaling module, integrating a char-word attention mecha-
nism to combine character and word-matching sequence infor-
mation.

The correct versions, Yc and Yw, represent the targeted cor-
rection outcomes and ideal word-matching results, aiding in dis-
tinguishing between incorrect and correct word-matching se-
quences. In the correction module, we generate the correct
result, employing a copy distribution simultaneously to avoid
over-correction and improve accuracy.

In conclusion, our error correction model operates as fol-
lows: Given a character sequence Xc = xc

1, x
c
2, . . . , x

c
n of

length n, the model strives to produce a target sequence Yc =
yc
1, y

c
2, . . . , y

c
n of equivalent length, where the typos in Xc

are rectified. This task is posed as a conditional genera-

Figure 2: Bi-direction 2-gram pinyin match flow chart of dy-
namic error scaling mechanism

tion problem, aiming to maximize the conditional probability
P (Yc | Xc).

2.1. Dynamic Error Scaling Mechanism

This section introduces a dynamic error scaling mechanism
aimed at tackling inaccurate word matches resulting from char-
acter errors. In particular, the module integrates dictionary
information into the model directly, extending character se-
quences into character-word pairs[20]. For enhancing the
matching of incorrect words, we apply both error reduction and
amplification strategies and integrate word-level phonetic infor-
mation via bidirectional pinyin matching.

2.1.1. Bi-directional 2-gram Pinyin Matching

In our method, as illustrated in Figure 2, we utilize the dynamic
error scaling mechanism to improve word matching accuracy.
The process begins with trie tree matching (TTM) performed
on all characters. For incorrect words resulting from incorrect
characters, we incorporate a bidirectional 2-gram Pinyin match
for word matching.

To accomplish this, we employ the PyPinyin library to ob-
tain the Pinyin pronunciation of each character. Given that Chi-
nese words commonly consist of 2-gram combinations, our al-
gorithm pairs characters in incorrect words with corresponding
2-gram words from the dictionary in both backward and forward
directions. It is important to note that the bidirectional 2-gram
Pinyin matching algorithm considers 2-gram word matches in
both the input text and the dictionary, rather than solely within
the input text.

2.1.2. Error Reduction

In our error reduction strategy, we focus on two distinct scenar-
ios to avoid overcorrection that may arise from integrating in-
correct word information. Firstly, for those characters in words
that are already correct within the sentence, we strive to ac-
curately match them to the correct words as far as possible.
This effort helps to preserve the integrity of the correct elements
within the text.

Secondly, for correct characters found within incorrect
words, we employ a specific set of strategies. The intention
here is to ensure that these correct characters are not inappro-
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priately matched to incorrect words due to the erroneous con-
text they appear in. Notably, this strategy considers pronunci-
ation errors in Chinese, such as flat and warped tongues, front
and back nasal sounds, among others. For instance, we utilize
the bi-directional 2-gram pinyin match to guide the character
”参-(join)-(can)” found in an incorrect word to its correct word
counterpart ”参加-(join)-(can jia)”. This way, we effectively
mitigate the risk of overcorrection, thereby preserving the au-
thenticity of the correct characters even within incorrect words.

2.1.3. Error Amplification

In the case of incorrect characters within erroneous words, it’s
imperative for the model to assimilate the incorrect word-level
information to improve its capability in error detection and
correction. For this reason, we adopt an error amplification
strategy. During the bidirectional 2-gram pinyin match pro-
cess, we limit the original characters to words with similar pro-
nunciations and match incorrect words to incorrect characters.
For example, the incorrect character ”家-(home)-(jia)” can be
matched to ”禅家-(Zen home)-(chan jia)” for error amplifica-
tion.

2.1.4. Dynamic Char-Word Attention

After we get the word sequence of all characters, we introduce
a character-to-word dynamic attention[21] mechanism to de-
termine the degree of correlation between each character and
its matching. Specifically, for all words assigned to the i-
th character, we denote their corresponding word vectors as
hw
i = {hw

i1, . . . , h
w
im}. Here, hw

ij represents the vector of the
j-th word assigned to the i-th character, where m is the total
number of words assigned. The relevance of each word ai can
be calculated by (1), where Wattn is the weight matrix of bi-
linear attention, hc

i is the i-th character vector. Through the
application of nonlinear transformations to hw

i , we can align
different representations of character and words vectors. This
approach enables our model to capture better and integrate con-
textual information of word-level features, thereby improving
its text error correction ability.

ai = softmax
(
hc
iWattn (Wwh

w
i + bw)

T
)

(1)

Therefore, the weighted sum of all words can be obtained by:

zwi =
m∑

j=1

aij

(
Wjh

w
ij + bj

)
(2)

Finally, the weighted dictionary information is injected into
the character vector via:

h̃i = hc
i + zwi (3)

2.1.5. Differences From Confusion Sets

In distinguishing itself from traditional confusion sets, our dy-
namic error scaling mechanism introduces two innovative fea-
tures. Firstly, our model uniquely utilizes a 2-gram pinyin
match to explicitly leverage the phonetic information, thereby
significantly enhancing its performance in correcting ASR out-
put text. Secondly, we employ an innovative strategy of inte-
grating word-level features dynamically. By incorporating a
dictionary, our model successfully captures implicit syntactic
and semantic knowledge, which markedly bolsters its error de-
tection and correction capabilities.

2.2. Correction Module

Finally, we employ a correction module to correct erroneous
sentences, which combines word-level feature and syntactic
structure to correct errors, effectively improving the error cor-
rection accuracy. The final output of the correction module is a
weighted sum of the generative distribution and the copy distri-
bution.

2.2.1. Generative Distribution

The generative distribution, Pgen ∈ Rv is computed by a
single-layer feed-forward network with softmax normalization:

Pgen = softmax
(
Wgenh̃i + bgen

)
(4)

where Wgen ∈ Rv×768 and bgen ∈ R768 are generative pa-
rameters, v is the size of the vocabulary.

2.2.2. Copy Distribution

The copy distribution can directly copy the correct characters in
the input sequence and only correct the generation distribution
of the wrong characters, which is more suitable for the feature
that most of the content of the input sequence in the text error
correction task is correct, thus avoiding overcorrection. Denote
the index of xc

i in the vocabulary as id(xc
i ), then the copy dis-

tribution of xi, Pcopy ∈ {0, 1}v, is a one-hot vector satisfying:

Pcopy[c] =

{
0 c ̸= idx (xc

i )
1 c = idx (xc

i )
(5)

2.2.3. Output Probability

The final output of the correction module is a weighted sum of
the generator distribution and the copy distribution, where the
weights are the copy probabilities learned by the model. The
copy probability ω is computed by a layer-normalized two-layer
feed-forward network. The final output distribution P is calcu-
lated by:

P = ω × Pcopy + (1− ω)× Pgen (6)

Given a training sample (X,Y ), the correction loss is de-
fined as:

L = −
∑

logP (Yi | Xi) (7)

where Xi is the i-th character of the wrong sentence, Yi is
the corrected character of Xi, and P is the output distribution.

3. Experiment
3.1. Datasets and Evaluation Metrics

The training data consisted of 10K manually annotated sam-
ples from SIGHAN [17, 18, 19] and 271K samples from Wang
et al.’s work [22]. We evaluated our proposed model using
the SIGHAN2015 [19] test dataset, which includes 550 posi-
tive samples and 550 negative samples. The negative samples
represent text without any typos. Table 1 shows the data statis-
tics. We compared the performance of our detection and correc-
tion model with several baseline methods [13, 15, 22, 23] using
character-level[24] precision, recall, and F1 scores.

3.2. Baselines

To evaluate the performance of the proposed method, we
compare it with the following baseline methods on the
SIGHAN2015 test dataset:
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Table 1: Statistics of datasets

Training Data Sent Errors

SIGHAN2013 350 343
SIGHAN2014 6,526 5,122
SIGHAN2015 3,174 3,037

Wang271k 271,329 381,962

Testing data Sent Errors

SIGHAN2013 1,000 1,224
SIGHAN2014 1,062 771
SIGHAN2015 1,100 703

• SoftMask [25] improves error detection in BERT by intro-
ducing a soft mask strategy.

• SpellGCN [13] combines the GCN network with BERT to
model the relationship between characters.

• cBERT[15] has the same architecture as Bert, but is pre-
trained with knowledge of misspelled words.

• PLOME [15] proposes a pretrained model, cBERT[15], and
incorporates phonological and visual features based on se-
quences of phonemes and strokes.

• CRASpell [24] constructs a noise modeling module based
on cBERT, making their model robust against consecutive
spelling errors. The model also includes a copy mechanism
to handle over-correction.

3.3. Experimental Settings

Based primarily on the configuration put forth by Zhang et
al.[25], we fix a maximum sentence length of 512, batch size
at 32, and implement a learning rate of 5e-5. Our experimental
setup incorporates encoders such as BERT[9] and cBERT[15],
while employing the pre-trained word embedding provided by
Song et al.[26].

3.4. Main Results

Table 2 displays the character-level performance of our cBERT-
based model and its baseline methods on the SIGHAN2015 test
set. The results demonstrate that our model achieves compara-
ble character correction scores to CRASpell, while exhibiting
higher recall and f-score in character detection.
Table 2: The character-level performance on the SIGHAN2015
test set

Method Detection-level Correction-level
P R F P R F

SoftMask 75.5 84.1 79.6 96.7 81.4 88.4
SpellGCN 77.7 85.6 81.4 96.9 82.9 89.4

cBERT 83.0 87.8 85.3 96.0 83.9 89.5
PLOME 85.2 86.8 86.0 97.2 85.0 90.7

CRASpell 83.5 89.2 86.3 97.1 86.6 91.5
ours (cBERT) 83.6 89.8 86.6 96.2 86.3 91.0

3.5. Ablation Study

We conducted ablation studies to investigate the contribution of
each component in our BERT-based model. The components
examined were the copy mechanism, raw trie tree matching
(TTM), and the dynamic error scaling mechanism (DESM).

Table 3 reveals that the integration of TTM into BERT im-
proved all metrics over raw BERT and BERT with the copy
mechanism. Adding bi-directional 2-gram pinyin match to
TTM, forming the DESM, further boosted all scores except cor-

rection precision, which decreased compared to TTM. This in-
dicates our model may over-correct errors for a better overall
performance.

Table 3: Ablation Study on SIGHAN2015: character-level

Method Detection-level Correction-level
P R F P R F

BERT 75.8 85.5 80.4 94.7 80.9 87.3
BERT+copy 78.1 85.8 81.8 95.7 82.1 88.4
BERT+TTM+copy 80.0 86.5 83.1 96.2 83.2 89.2
BERT+DESM+copy 80.7 87.6 84.0 95.6 83.8 89.3

Note: BERT and BERT+copy data from CRASpell[24].

3.6. Error Analysis

To analyze prediction errors, we conducted a statistical analy-
sis of the Part-Of-Speech of error words in the SIGHAN2015
test set. Table 4 presents the original error distribution and the
distribution after correction by our method based on BERT.

Table 4: Comparison of Part-Of-Speech Distributions between
Incorrect and Corrected Text Using Our Method

verb noun adv pron aux others

Source data 32.1% 26.7% 10.4% 8.1% 6.3% 16.4%
BERT 3.4% 2.1% 0.2% 2.3% 1.5% 3.2%

ours (cBERT) 1.9% 1.5% 0.3% 2.2% 1.7% 1.4%

We use the words matched by the error scaling mechanism
and the Jieba library to judge the Part-Of-Speech of the wrong
characters. From a statistical analysis of the distribution of Part-
Of-Speech tags for wrong words in the incorrect text, it can be
seen that nouns and verbs occur more frequently, which mainly
consist of 2-gram words. Our model with a dynamic error scal-
ing mechanism can significantly correct 2-gram word errors,
thus reducing this type of error significantly. However, errors
associated with single characters, such as auxiliary words (e.g.,
啊 (ah) and personal pronouns (e.g.,我 (I) and你 (you)), often
occur at the beginning or end of a sentence, making them chal-
lenging to correct. Additionally, our model performs poorly
when encountering successive errors at the end of a sentence.

4. Conclusions
In this work, we’ve introduced a novel dynamic error scaling
mechanism aimed at improving Chinese ASR by detecting and
correcting phonetically erroneous outputs. This mechanism dy-
namically combines word-level features and phonetic informa-
tion, effectively utilizing a bi-directional 2-gram pinyin match
to leverage phonetics. Our strategy employs error reduction and
amplification to enhance error handling. Benchmark experi-
ments demonstrate our model’s improved F1 performance over
existing baselines, attesting to the effectiveness and superiority
of our approach in Chinese ASR error correction.
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