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Abstract 

Respiration rate (RR) and other respiratory features, such as 

inhale-to-exhale ratio (IER) and duration of breathing phases 

can be used as marker of respiratory and lung conditions and to 

modulate autonomic function in biofeedback applications. In 

this study, audio respiration signals were recorded by 112 

participants using smartphones. RR was estimated using a 

frequency-domain method. Acoustic features were extracted 

from the audio signals and random forest was used to classify 

inhales, exhales and respiratory pauses, with ROC AUCs of 

0.84 and 0.95 for inhales and exhales respectively. RR was 

estimated with a mean absolute error (MAE) of 0.63 bpm. IER 

was estimated with a MAE of 0.37, with 76% of the dataset 

reporting a MAE of less than 0.20. The results demonstrate a 

computationally efficient approach to estimate respiratory 

features from audio signals recorded using smartphones that 

can be easily implemented in real-time for large-scale home 

monitoring or biofeedback applications. 

Index Terms: respiratory rate, inhale-to-exhale ratio, acoustic 

features, random forest, classification. 

1. Introduction 

Respiratory rate is a vital sign used as marker of many 

respiratory, lung and heart conditions [1]–[3]. It can be used for 

early detection of cardiopulmonary arrest [1], [2] and has been 

used as part of a composite Patient-at-Risk score to identify in-

patients that need to be, or would benefit from being, transferred 

to the intensive care unit [3]. Respiratory variables beyond 

respiratory rate can also be markers of various conditions and 

can be used to provide respiratory feedback to modulate 

autonomic function [4]. The ratio of inhalation time to 

exhalation time is associated with heart rate variability in adults 

[5]–[7] has been used to detect stress [8], anxiety [8], [9], and 

even as a feature for identity authentication since it can be a 

marker for sedentary breathing patterns [10]. Furthermore, 

inhalation time as a fraction of the total respiratory period is 

associated with airway obstruction [11], [12].  

The COVID-19 pandemic has emphasized the need for remote 

monitoring of health that can be easily deployed into homes 

with technology already available to the general public. 

Breathing sounds can be recorded using smartphone-embedded 

microphones without the need for medical training, providing 

an option for low-cost remote health monitoring of a large 

group of patients. Previous studies have presented methods to 

estimate respiratory rate using audio data [13], [14] based on 

frequency-domain methods, together with signal processing 

techniques. Other studies have applied classification methods 

to audio date to identify periods of inhalation, exhalation and 

respiratory pauses [15], [16]. Detection of inhale in breathing 

sounds can be challenging, however, due to the lower amplitude 

of the inhale signal when compared to exhales events and their 

similar acoustic characteristics. 

In this study, we present a new approach to classify pause, 

inhalation and exhalation periods in acoustic respiration signals 

recorded using smartphones. Respiratory rate is estimated along 

with inhalation and exhalation durations, and inhale-to-exhale 

ratio (IER). A random forest classifier is used to distinguish 

between pauses, inhales and exhales using acoustic features and 

post-processing of the classifier probabilities. The estimated 

RR and IER are compared with the same metrics extracted from 

annotated signals in 112 participants. 

2. Materials and Methods 

2.1. Dataset 

The dataset consisted of audio signals recorded by 112 

participants (aged 41.74 ± 13.53, 70 female)  during quiet 

breathing with their phone held horizontally at a distance of 2 

cm from their mouth/nose, Figure 1. The data were a subset of 

a larger  data set recorded remotely where the inclusion criteria 

for the present study required that inhalation was audible or 

visible in the signal when examined during manual annotation 

of the data. The study was approved by the UCD Human 

Research Ethics Committee and St. Vincent’s Hospital Ethics 

Committee. Full details of the experimental protocol are 

provided in [13]. 

2.2. Data annotation 

Audio data were annotated by two independent researchers and 

breathing phases labeled as ‘Inhale’ and ‘Exhale’. A third 

researcher reviewed the annotations and settled any mismatches 

between the two first annotations for each signal. A third 

category ‘Pause’ was created for the parts of the signal which 

were not annotated as either ‘Inhale’ or ‘Exhale’. Pauses can 

also be present in breathing and are characterized as the 

cessation of the airflow [17], thus the labels used better reflect 

the breathing process.  

2.3. Respiratory rate estimation 

Respiratory rate was estimated from the fundamental frequency 

of the envelope of the acoustic respiration signal. Audio signals 

were low pass filtered with a cut-off frequency of 3.8 kHz with 

a 4th order Butterworth filter applied forwards and backwards.  
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Figure 1: Data collection set-up for recording of breathing with mobile devices. 

 

The cutoff frequency of 3.8 kHz was chosen to  accommodate 

signals recorded with a sampling frequency of 8 kHz. The mean 

value of the signal was subtracted prior to full wave 

rectification. The signal envelope was then estimated by 

applying low-pass 2nd order Butterworth filter was applied to 

the rectified signal. The envelope was transformed to the 

frequency domain using Welch’s method, with a window length 

of half the signal length, nfft of twice its length and overlap of 

50%. The frequency at which the highest peak in the power 

spectrum occurred within the 0.09 Hz and 1 Hz frequency band, 

corresponding to respiratory rates in the range 5-60 bpm, was 

identified and scaled to estimate the respiratory rate in breaths 

per minute. 

2.4. Feature extraction 

Forty features were estimated using a custom developed scripts 

in Python. Each audio signal was divided into epochs of 0.1 s 

with 0.5 overlap. Features were estimated for each epoch 

separately. The following features were selected from acoustic 

voice features commonly used in voice and speech analysis 

[18]–[20]: median frequency (F0), its standard deviation (SD 

F0), harmonics-to-noise ratio (HNR), jitter, relative average 

perturbation of jitter (RAP), five-point perturbation quotient 

(PPQ5), difference of differences in periods (DDP), glottal-to-

noise excitation rate (GNE). Cepstral-based features from the 

Mel frequency cepstral coefficients (MFCC) were also 

estimated [21], with the mean and standard deviation of the 

mean of the 13 MFCCs (mean MFCC, SD MFCC), the standard 

deviation of the Delta of the calculated MFCCs (mean Delta, 

SD Delta) and the second order delta of the MFCCs (mean 

Delta 2, SD Delta 2). Spectrum-based features, such as the 

maximum power in the power spectrum (maxPower), the 

frequency in which the maximum power occurs 

(freqMaxPower), the median frequency (medianFreq) and the 

spectral edge were estimated. Finally, a number of features 

related with the amplitude of the signal were estimated, 

including the mean, standard deviation (SD), median, integral, 

5th and 95th percentiles, kurtosis and skewness of the rectified 

signal, along with the integral of the signal after the Teager-

Kaiser Energy Operator (TKEO) [22]. The normalized values 

of  F0 (normF0) and maxPower (normMaxPower) were 

included to account for individual differences. To account for 

the change from epoch to epoch by differentiating one epoch 

with respect of the next. This was done for F0, SD MFCC, SD 

Delta, SD Delta 2, spE, mean, SD, median, sum,  5th and 95th 

percentiles, kurtosis, skeweness and TKEO: diff_F0, 

diff_meanMFCC, diff_meanDelta, diff_meanDelta2, 

diff_SDMFCC, diff_SDDelta, diff_SDDelta 2, diff_spE, 

diffMean, diffSD, diffMedian, diffSum, diff_5prctl,  

diff_95prctl, diffKurtosis, diffSkeweness, diffTKEO. 

2.5. Machine learning model 

To reduce the number of features considered by the machine 

learning model, correlation analysis was performed on the 

feature matrix. Spearman rho was used as not all features were 

normally distributed. Features that were highly correlated with 

other features (rho > 0.8) were removed, resulting in 21 features 

being retained. 

A Random Forest classifier was implemented to classify each 

epoch as inhale, exhale, or pause. A Decision Tree was also 

implemented to compare performances with the Random 

Forest. However, the Random Forest algorithm was selected 

since it is a versatile model that is efficient, is suitable for 

multiclass classification and yields an interpretable model for 

this type of healthcare application. A nested grid search was 

performed to optimize the hyperparameters (maximum depth, 

minimum samples split, ccp alpha and the maximum samples) 

of the random forest model. Nested feature selection within the 

cross-validation was then performed using a backwards 

sequential search wrapper and specifying 10 features as the 

maximum to be included. The relative feature importances were 

analysed, Figure 2. 

Ten-fold cross-validation with nested processes was performed. 

All epochs for a certain participant were contained within one 

and only one fold. For each fold, we performed undersampling 

of the majority class to avoid unbalanced datasets. Each epoch 

was classified as the class (pause/inhale/exhale) with the 

highest probability, as determined by the random forest model.  

Performance metrics were calculated as the mean across all 

cross-validation folds: precision, recall, F1-score and the area 

under the receiver operating characteristic (AUC ROC) were 

estimated for each respiratory class, along with the overall 

three-class accuracy. Following cross-validation, feature 

selection and model development were performed using the 

entire dataset to develop the final model. 

2.6. Post-processing 

The thresholds for the classification classes were adjusted based 

on the ROC curves for each breathing phase to bias the post-

processing to the inhale class to reduce the misclassification of 

the inhale epochs. The quantity and length of each respiration 

phase was estimated from the epochs classified by the Random 

Forest model. If an unphysiological inhale duration of less than 

3 epochs was detected, the probabilities for the inhale class 

were examined and every epoch lying between two adjacent 

inhale phases with probability greater than 0.3 was re-labeled 

as an ‘inhale’ epoch. A similar process was applied to exhale 

epochs if exhale duration less than 3 epochs was identified. 
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To reduce the influence of misclassification of spurious epochs 

a median filtered with a kernel with a length of 11 points was 

applied to signals containing more than 60 inhales or exhales in 

90 s. If the ratio of the number of inhales to the number of 

exhales was greater than 1.5, indicating that the exhale class 

was occurring 50% more frequently than the inhales, the same 

median filter was also applied.   

The mean inter-breath interval (IBI) for each audio signal 

was extracted from the previously estimated respiratory rate. 

The distance between breathing phases (DBP) was estimated 

for inhales, exhales and pauses. A series of conditions was 

applied to improve classification performance. First, if the DBP 

for pauses was greater than the mean IBI for that participant, 

the threshold for inhales was decreased to 0.25 to search for a 

missing inhale. If the DBP for the inhale class was greater than 

1.5*IBI, the threshold for inhales was decreased to 0.3 to 

identify missing inhales Similar conditions were then applied to 

the exhales class. To account for short breathing events that 

may have been missed by the median filter, the DBP for inhales 

and exhales were reexamined, and if either was less than 

0.3*IBI, their probabilities were analysed and their threshold 

decreased to 0.3. Lastly, to account for improperly grouped 

breathing events, the classification threshold for inhales or 

exhales was decreased again to 0.3 if the DBP of inhales and 

exhales was bigger than 1.5*IBI. 

2.7. Breathing events metrics 

The mean inhale and exhale duration was estimated for each 

recording along with the ratio of inhale to exhale duration (IER) 

and compared to the values from the annotated signals. As the 

number of detected inhales and exhales were not always equal, 

IER was estimated using the minimum of the number of 

detected inhales and number of detected exhales. To avoid edge 

errors when calculating IER at the start and end of the 

recordings, only the events in the middle of the recorded were 

included in the IER calculation. 

 

Figure 2: Feature importance for the final model and feature 

consistency during nested feature selection within the 10-fold 

cross-validation. 

3. Results 

3.1. Machine learning model 

The grid-search hyperparameter optimization within the 10-

fold cross-validation resulted in the minimum samples split 

parameter always being selected as 0.1, ccp alpha as 0 and 

maximum samples for splitting the tree as 0.6. The maximum 

depth of the nodes was selected as 3 for 1 fold, 4 for 3 folds and 

5 for 6 folds. For the nested feature selection, medianFreq and 

spectral edge were selected in all 10 folds.  

The final set of features selected by the model were 

normMaxPower, medianFreq, spectral edge, SD F0, 

diffKurtosis and the 95th percentile. The relative importance of 

each feature along with their selection consistency during cross-

validation is presented in Figure 2. 

Performance metrics for Random Forest classification of each 

respiratory event are presented in Table 1, and the receiver 

operating characteristics for each class in Figure 3. The overall 

balanced accuracy, precision, recall and F1-score for the model 

were all 73.0%. The pause threshold was set to 0.42, inhale to 

0.38 and exhale to 0.427. In contrast, the Decision Trees model 

tested as comparison yielded an accuracy of 69.7% and an AUC 

ROC curve for inhale and exhale were 0.80 and 0.92. 

 

Table 1: Performance metrics for each respiratory class. 

 Inhale Exhale Pause 

Precision 59.5% 78.8% 73.9% 

Recall 57.6% 87.5% 67.9% 

F1-score 58.5% 83.0% 70.8% 

ROC AUC 0.84 0.95 0.55 

 

 

Figure 3: ROC curves for classification of (a) inhale and 

(b) exhale. 

3.2. Respiratory rate and inhale-to-exhale ratio 

A sample audio recording, with post-processed classifier 

results, is presented in Figure 4. The mean absolute error 

(MAE) of the respiratory rate averaged over all participants was 

0.63 breaths per minute (bpm) with a standard deviation of 1.04 

bpm and a mean absolute percentage error (MAPE) of 4.6%. 

The annotations for RR revealed a group mean of 13.74 ± 4.45 

bpm while the algorithm reported a group mean of  13.56 ± 4.50 

bpm. The IER MAE was 0.37 with a standard deviation of 0.43 

for all 112 signals analyzed, Table 2.  

The  MAE of the respiratory rate was lower than 0.5 bpm for 

76% of the signals analysed. These signals had a IER MAE of 

0.20. The remaining 24% of the dataset were found to have 

substantially higher IER MAE of 0.88, consistent with the 

classifier metrics of 73% accuracy across all classes. 

 

Table 2: Mean, standard deviation and mean absolute error 

for breathing events. 

Measurement Dataset Mean ± SD MAE 

Inhale duration (s) 
Annotated 1.22 ± 0.39 

0.56 
Predicted 1.19 ± 0.98 

Exhale duration (s) 
Annotated 1.72 ± 0.60 

0.38 
Predicted 1.69 ± 0.88 

Inhale-to-exhale 

ratio 

Annotated 0.75 ± 0.20 
0.37 

Predicted 0.76 ± 0.61 
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Figure 4: Sample signal with labels and the classifier prediction. This signal had an annotated IER of 0.47 and a predicted 

IER of 0.58 and a MAE in IER of 0.17. 

 

4. Discussion 

This work presents an epoch-by-epoch classification of 

inhalation, exhalation and respiratory pauses from audio signals 

recorded remotely using mobile devices in a cohort of 112 

participants. Inhale and exhale duration and inhale-to-exhale 

ratio were estimated from the outputs of the classifier model. 

The comparison of protocol, devices, accuracy and absolute 

errors between this study and previous work is presented in  

Table 3. 

The accuracy, precision, recall and f1-scores of the presented 

classifier, at 73.0%, are comparable with  previous studies that 

reported accuracy of 75.5% [15] and 77% [16] when analyzing 

breathing patterns, Table 3. However, in [15], the data were 

collected in a laboratory setting and participants trained their 

breathing patterns to always follow the same inhale-pause-

exhale-pause dynamics, thus allowing for extra assumptions 

when analyzing the data. 

In contrast, our study includes spontaneous breathing data 

recorded remotely. In [16], a convolutional neural network 

approach was used and the classifier was trained using acoustic 

data and inertial sensor data. The same study [16] reports a 

binary (inhale/exhale) classification accuracy of 49% using 

random forests, based on audio data recorded by smartphones 

on the chest, while the present study achieved 73% accuracy 

using acoustic signals recorded close to the mouth and nose.  

The reported classifier accuracy is lower than another study that 

analysed inhales and exhales in 125 participants, which 

reported accuracy of 93.2% [21]. However, in [21], the data 

were collected in a laboratory setting and the breathing patterns 

were controlled using breathing exercises, similar to [16], while 

our data were recorded at home. The f1 score for inhale 

classification, 58.5%, was substantially lower than for exhale 

classification, 83%. A previous study using support vector 

machines to classify inhalation and exhalation reported f1 

scores of 68% and 83%, respectively, in participants with 

respiratory conditions [26]. Though they report a higher f1 

score for inhalation, that study did not consider pauses in the 

auditory signal, which can often be mistaken as inhales due to 

the inhale lower amplitude in the sound signal. Additionally, 

several previous studies [15], [16] employ neural network 

models  to classify breathing patterns, which are less efficient 

and more complex than random forest, decreasing the 

interpretability of the results. 

5. Conclusions 

A computationally inexpensive approach to estimate respiration 

rate, inhale and exhale duration and inhale-to-exhale ratio, 

implementable in real-time is presented.  The methods yielded 

an accuracy of 73% and low mean absolute error for respiration 

rate and inhale and exhale duration. In addition, inhale-to-

exhale ratio can be estimated with low error for 76% of the 

recordings analysed. Data collection was performed by the 

participants in their own home using their own devices. The 

approach could be used for home-monitoring of respiration that 

can be easily deployed and for real time biofeedback 

applications.  
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Table 3: Comparison of models from previous studies. 

Model Protocol Devices Accuracy 
RR 

MAE/MAPE 

F0 and RF: Present study Real-life conditions in home Participant smartphone 73% 0.63/4.6% 

CNN [15] Laboratory Smartphone 75.5% 2.27/38.3 % 

CNN [16] Laboratory Smartphone & chest band 77% -/8.3 % 

Acoustic analysis [21] Laboratory Microphone 93.2% - 

SVM [26] Real-life hospital conditions Smartphone 75.5% - 

 F0: fundamental frequency method for RR; RF: Random forest; CNN: Convolutional Neural Network; SVM: Support vector machine 
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