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Abstract

Personalized speech enhancement (PSE) is a real-time SE
approach utilizing a speaker embedding of a target person
to remove background noise, reverberation, and interfering
voices. To deploy a PSE model for full duplex communications,
the model must be combined with acoustic echo cancellation
(AEC), although such a combination has been less explored.
This paper proposes a series of methods that are applicable to
various model architectures to develop efficient causal models
that can handle the tasks of PSE, AEC, and joint PSE-AEC. We
present extensive evaluation results using both simulated data
and real recordings, covering various acoustic conditions and
evaluation metrics. The results show the effectiveness of the
proposed methods for two different model architectures. Our
best joint PSE-AEC model comes close to the expert models
optimized for individual tasks of PSE and AEC in their respec-
tive scenarios and significantly outperforms the expert models
for the combined PSE-AEC task.
Index Terms: personalized speech enhancement, target speech
extraction, acoustic echo cancellation, multi-task training

1. Introduction
Many institutions have adopted hybrid/remote work using on-
line communication tools in response to the COVID-19 pan-
demic. This has become a norm as the world transitions to the
post-pandemic era. These tools have also become important for
connecting family members and friends. However, online com-
munications can easily be disrupted by unwanted interference,
including other speakers in the room, background noises, and
acoustic echoes. To address this challenge, most online com-
munication tools have adopted real-time speech enhancement
(SE) and acoustic echo cancellation (AEC) methods.

Existing SE, AEC, and joint SE-AEC models are limited
as they are usually trained to preserve all human voices present
in the near end. Therefore, voices from other speakers in the
same environment, i.e., interfering speakers, can “leak” into the
outbound signal, annoying the calls and compromising privacy.

Personalized speech enhancement (PSE) models have at-
tracted attention due to their ability to remove the interfering
speech as well as the background noise [1, 2, 3]. The PSE sys-
tems are conditioned on a cue from the target speaker, usually a
speaker embedding vector such as a d-vector. They remove all
other speakers in the input audio except for the target speaker
and suppress the background noise and reverberation [2, 3].
However, most existing PSE models do not have AEC capa-
bility. Although it is desirable for a single model to encompass
all of PSE, AEC, and joint PSE-AEC tasks [4, 5], achieving this
goal under a strict cost requirement remains a challenge.

This paper proposes a set of methods for developing effi-
cient causal models that can handle the PSE, AEC, and joint
PSE-AEC tasks. Our proposed solutions involve incorporating
the attention-based align-block as described in [6] to improve
the AEC performance for real recordings by softly aligning the
microphone and far-end signals. Furthermore, we propose to
use the speaker embedding vector only in the latter half of the
network and introduce a bypass path during training. This en-
courages the earlier layers to focus solely on echo and near-end
noise removal, while allowing the later layers to effectively re-
move the interfering speakers and residuals from the early lay-
ers. This architecture will help mitigate the undesirable target
speaker over suppression (TSOS) that arises from excessive re-
liance on the speaker embedding vector, especially for echo re-
moval. The models are trained with multi-task learning encom-
passing AEC, PSE, and joint PSE-AEC. Comprehensive evalua-
tions were carried out by using both simulated and real data. We
applied our methods to both a recently proposed time-domain
low-cost PSE model called end-to-end enhancement network
(E3Net) [3] and STFT-based VoiceFilter-Lite1 [7]. The joint
models trained with the proposed methods performed compar-
atively to single-task PSE and AEC models, while maintaining
similar computational costs and limited TSOS.

2. Related work
We define PSE as the process of extracting a clean target speech
signal in real time from a noisy, potentially overlapped sig-
nal based on a speaker embedding vector of a target talker.
Our evaluation criteria involve both speech quality and auto-
matic speech recognition (ASR) accuracy. Pioneering works
include [8], DENet [9], SpeakerBeam [10], VoiceFilter [11],
and VoiceFilter-Lite [7]. We aim to develop computationally
efficient causal models for communication applications.

Several efficient causal PSE methods were proposed previ-
ously. VoiceFilter is an STFT-based system that combines con-
volutional and recurrent layers, conditioned by the d-vector ex-
tracted from an enrollment audio signal. VoiceFilter-Lite [7] is a
causal, computationally faster version of VoiceFilter. Personal-
ized PercepNet (PPN) [1] modified the original PercepNet [12]
by conditioning it on the speaker embedding. Joint Unified Per-
cepNet (UPN) [13] model was proposed to deal with both per-
sonalized and general SE scenarios. [2] proposed a personalized
deep complex convolution recurrent network (pDCCRN) that
outperformed causal VoiceFilter. It also highlighted the target
speaker over-suppression (TSOS) problem resulting from the
ambiguity in speaker characteristics and proposed a metric to
measure the degree of TSOS with mitigation methods. Person-

1We used “FFT magnitude” configuration with power-law compres-
sion and reconstructed enhanced audios with noisy phase.
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Figure 1: E3Net and VoiceFilter-Lite adapted for PSE-AEC task
using proposed improvements. ‘Cat’ and ‘Mut’ stand for con-
catenation and element-wise multiplication, respectively. For
E3Net, feature extraction and reconstruction stand for a learn-
able encoder and decoder, respectively; and temporal layers
stand for a projection layer followed by LSTM blocks. For
VoiceFilter-Lite, feature extraction and reconstruction stand for
STFT and ISTFT, respectively; and temporal layers stand for
LSTMs.

alized E3Net was proposed in [3] to efficiently perform PSE in
the time domain. The model outperformed larger models such
as pDCCRN with a much smaller computational cost. However,
none of these PSE models addressed the AEC task.

The field of AEC technology has shifted from traditional
digital signal processing (DSP) to deep learning (DL) meth-
ods [14, 15, 16]. While some studies adopted a DL and DSP
hybrid approach [17, 18], others employed DL-only meth-
ods [4, 5, 6, 19, 14, 15, 16]. An attention-based soft align-
ment module was proposed in [6] to deal with the potentially
varying time delays between the microphone and far-end sig-
nals that are seen in challenging real-world AEC scenarios. In
[5], an AEC model with optional speaker embedding-based per-
sonalization was proposed, although it was not tested for PSE.
More recently, a joint PSE-AEC model, namely personalized
gated temporal convolutional neural network (pGTCNN), was
proposed utilizing the embeddings of the target and/or far-end
speakers [4]. However, the evaluation was limited to simulated
experiments without considering the TSOS issue. This model
is based on a somewhat simple combination of the microphone
signal, the far-end signal, and the embedding input, and it would
benefit from our proposed methods.

3. Improvements to joint PSE and AEC
A joint PSE-AEC model must use the microphone signal, far-
end signal, and speaker embedding from the enrollment signal
as input. One approach is to use a neural network that concate-
nates the features extracted from the microphone and far-end
signals, as seen in [4]. The speaker embedding can also be in-
cluded as input to one or more layers of the model. However,
this approach is insufficient at handling time delay fluctuations
between the microphone and far-end signals. We also found that
it suffered from TSOS. Additionally, in practice, some training
samples lack speaker labels and enrollment audio files.

We propose a set of methods to address these chal-
lenges and apply them to representative time-domain and
STFT-domain PSE models, namely E3Net [3] and STFT-based
VoiceFilter-Lite [7]. We chose these models as they are com-
putationally efficient, although the proposed methods are ap-
plicable to other model architectures. Fig. 1 shows a diagram
of PSE-AEC models using the proposed methods. Although

the diagram and the associated caption provide sufficient in-
formation to understand the overall architecture of E3Net and
VoiceFilter-Lite, we also refer the reader to [3] and [7] for the
details of the respective models. Below, we elaborate only on
our key improvements.

Learnable encoder: For time-domain models including
E3Net, we add a learnable encoder for the far-end signal in-
put. For the microphone signal input, it is beneficial to increase
the number of learnable encoder’s filters, Fmic, as shown in
[3]. However, for the far-end signal input, a smaller number
of learned features, Ffar , can be used without impacting the
speech quality since the obtained features are used only for
aligning the far-end and microphone signals and estimating the
echo intensity for removal.

Align-block: We use the align-block with source-target at-
tention proposed in [6], which was shown to be effective in deal-
ing with an unaligned microphone and far-end signals. As input
to the align-block, we use the learnable and STFT features for
the time-domain and STFT-domain models, respectively.

Bypass path: In the original E3Net and VoiceFilter-Lite
for PSE, the speaker embedding vector is concatenated with the
observed features prior to the first temporal layers. However,
our preliminary experiment found that applying this structure
to the PSE-AEC task increased TSOS when the far-end sig-
nal was not present. In PSE-AEC, both the far-end signal in-
put and the speaker embedding vector may be used as clues
for removing the echo signal. We conjecture that the observed
TSOS increase was the result of the model becoming over-
reliant on the speaker embedding even when the far-end sig-
nal provides sufficient clues for the echo removal, which would
hurt the model’s robustness. To counteract this, we append the
speaker embedding vector to the N1th temporal layer’s output.
For E3Net, another projection layer reduces the dimensionality
of the concatenated features to the embedding’s dimension and
feeds them to the remaining N2 temporal layers. This architec-
tural change is aimed at dedicating the earlier temporal layers
to the AEC plus noise removal task. To further encourage the
first N1 temporal layers to focus on AEC and noise removal,
we add a path bypassing the later N2 temporal layers (the blue
dashed line in Fig. 1) and perform multi-task learning by using
AEC mini-batch (see Multi-Task Training below).

Skip connection (SC): Lastly, we append the attention
weights from the align-block to the N1th temporal layer’s out-
put to help the latter temporal layers adjust the noise suppres-
sion behavior based on the presence of the echo signal.

Multi-Task Training: Our joint model aims to be as ef-
fective as task-specific models for AEC and PSE while outper-
forming the task-specific models in the PSE-AEC task where
the target speaker, interfering speakers, acoustic echo, and near-
end noise simultaneously exist in the microphone signal. To this
end, we alternate between these three mini-batches with differ-
ent data configurations in each iteration during training: AEC
mini-batch—which contains the target speaker, near-end noise,
and echo signals. These samples do not include speaker em-
bedding vectors. Hence, the model uses the bypass path to en-
courage the earlier temporal layers to focus on AEC and noise
suppression. PSE mini-batch—which includes the target and
interfering speakers as well as noise. The speaker embedding
vectors are included, while the far-end signal is all-zero. The
full path of the model is trained. The PSE mini-batch helps
the model learn the PSE capability. PSE-AEC mini-batch—
which includes all signals as well as the speaker embedding
vectors. The model uses the full path. This mini-batch helps
the model learn to jointly perform PSE and AEC. It also im-
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Table 1: Experimental results for PSE and PSE-AEC using VCTK data sets. TS1 includes the target, interfering speaker, and noise.
TS2 includes the target speaker and noise. TS3 includes only the target speaker. Test sets with postfix ’-echo’ also included far-end
echo signals. All scenarios include reverberation.

TS1 TS1-echo TS2 TS2-echo TS3

WER↓ DNSMOS↑ TSOS↓ WER↓ DNSMOS↑ AECMOS
ECHO↑ WER↓ DNSMOS↑ TSOS↓ WER↓ DNSMOS↑ AECMOS

ECHO↑ WER↓ TSOS↓
Baseline systems

No Enhancement 43.03 2.92 0 54.78 1.18 2.42 13.35 2.98 0 33.10 2.0 2.37 7.12 0
AlignCruse [6] - AEC 57.10 3.27 0 62.46 2.39 3.53 21.82 3.41 0 37.29 2.58 3.85 7.47 0
pGTCNN [4] - PSE-AEC 40.12 3.42 1.48 52.29 2.61 4.17 20.14 3.59 0.63 32.60 2.86 4.32 7.95 0.56

Effects of proposed improvements on VoiceFilter-Lite and E3Net
VoiceFilter-Lite [7]

- AEC 49.32 3.24 0.47 59.57 2.51 4.05 20.52 3.44 0.14 33.99 2.82 4.23 7.90 0.02
- PSE 40.13 3.25 1.19 53.36 2.54 3.97 19.71 3.44 0.22 34.34 2.69 4.13 7.41 0.12
- PSE-AEC Naı̈ve 48.85 3.17 3.55 55.51 2.46 3.99 22.80 3.35 1.62 34.91 2.76 4.12 8.21 1.44
- PSE-AEC w/o SC 41.86 3.24 1.56 52.54 2.56 4.02 20.93 3.43 0.62 34.25 2.82 4.15 7.90 0.33
- PSE-AEC w/ SC 41.63 3.25 1.66 52.21 2.59 4.04 20.39 3.44 0.48 34.18 2.84 4.14 7.69 0.37

E3Net [3]
- AEC 43.50 3.51 0.33 58.19 2.80 4.26 18.05 3.71 0.17 30.12 3.06 4.48 7.19 0.05
- PSE 36.91 3.49 2.15 51.40 2.69 4.23 18.35 3.74 0.33 33.51 2.95 4.41 7.54 0.32
- PSE-AEC Naı̈ve 38.70 3.47 1.54 54.06 2.64 4.24 19.76 3.70 0.96 33.85 2.87 4.39 7.82 1.38
- PSE-AEC w/o SC 38.96 3.43 1.45 51.88 2.63 4.27 19.43 3.68 0.51 32.70 2.91 4.46 7.46 0.06
- PSE-AEC w/ SC 38.05 3.48 1.62 49.97 2.75 4.35 19.76 3.71 0.52 31.08 2.98 4.48 7.45 0.14

proves the full-path AEC quality by exposing the later temporal
layers to training samples with non-zero echo signals.

4. Experimental results
To simulate PSE training and validation data, we adopted the
same configuration as [2, 3]. The clean speech utterances were
taken from the DNS Challenge data set [20], which is based on
LibriVox audio [21] and contains 544 hours of speech samples.
We used noise samples from AudioSet [22] and Freesound [23].
For each training and validation sample, we randomly placed
the target speaker between 0 to 1.3 meters away from the mi-
crophone, and the interfering speaker more than 2 meters away
by using simulated room impulse responses (RIRs). To improve
the model’s SE task performance, only half of the samples in-
cluded interfering speakers. We varied the signal-to-noise ratio
(SNR), signal-to-echo ratio (SER), and signal-to-interference
ratio (SIR) from 0 to 15 dB, -20 to 40 dB, and from 0 to 10
dB, respectively. The clean speech source for a far-end echo
signal was obtained from the DNS Challenge [20] and included
singing and emotional speech2.

We evaluated our model’s performance using simulated
long-duration test sets as described in [2, 3], based on the voice
cloning toolkit (VCTK) corpus [25]. These test sets encom-
pass five important scenarios: TS1: target speaker + interfering
speaker + noise, TS1-echo: TS1 + echo, TS2: target speaker
+ noise, TS2-echo: TS2 + echo, and TS3: target speaker only.
TS1 and TS2 evaluate the model performance in the PSE and
SE scenarios, respectively, while TS3 is used to assess the tar-
get speech quality degradation. TS1-echo is the most challeng-
ing test set, including all possible signals, and it measures the
PSE-AEC performance. TS2-echo evaluates the AEC capabil-
ity under noise. The SNR and SER were varied from 0 to 15
dB, and the SIR was varied from 0 to 10 dB. VCTK was used
as the clean speech source. To create a single long-duration file
per speaker, the files from the same speaker were stitched to-
gether. Therefore, the acoustic conditions (interfering speaker,
noise, RIR, SNR, and SIR) changed every few seconds, making
the evaluation challenging. The average duration of the individ-
ual test samples was 27.5 minutes. Each test set contains 109
speakers, totaling around 50 hours of data per test set.

In addition, we tested the models with real recordings. For
the PSE performance evaluation, we utilized the DNS Chal-
lenge personalized track [20] blind test set, comprising 859 real

2Our training data sources are publicly available and can be repro-
duced. RIRs can be generated with https://pyroomacoustics.
readthedocs.io/ [24].

recordings, 121 of which include interfering speakers. As for
AEC, we used the blind test set of the ICASSP 2022 AEC Chal-
lenge [16]. This test set consists of 600 real-world recordings of
30-45 seconds each, which are split equally into far-end single-
talk (FST) and double-talk (DT) cases. Furthermore, this test
set includes challenging scenarios commonly found in real on-
line meetings: long and varying delays between microphone
and far-end signals, loudspeaker and microphone distortions,
non-stationary noise, echo path changes due to moving near-
end speakers, audio DSP processing artifacts, and gain varia-
tions [16].

4.1. Evaluation metrics and implementation details

We evaluated the PSE performance using ASR quality, speech
quality, and TSOS. To measure the speech quality, we used
DNSMOS P.835 [26], which is a non-intrusive neural network-
based mean opinion score (MOS) estimator and can accurately
predict subjective quality ratings. Microsoft’s internal ASR
model was used to obtain the word error rate (WER). More-
over, we calculated the target speaker over suppression metric
from [2]. We measured the AEC quality using AECMOS [27],
which is a neural network MOS estimator similar to DNS-
MOS, although it was specifically designed for measuring the
echo removal quality (AECMOS ECHO) and signal degrada-
tion (AECMOS DEG). For the FST scenario, echo return loss
enhancement (ERLE) was also used. For the real data without
clean reference signals, namely the DNS and AEC Challenge
test sets, DNSMOS and AECMOS were used, respectively.

Both training and validation samples were 20 seconds long.
For E3Net, we set the femb and femb−hid to 128 and 768,
respectively. The input and hidden dimensions of the LSTM
blocks were the same and set to femb. The learnable encoder
and decoder window (filter size) and hop size (stride) were 20
ms (320) and 10 ms (160), respectively. The dimensions of
the learnable encoders for the microphone and far-end signals,
Fmic and Ffar , were 2048 and 256, respectively. The number
of the LSTM blocks, N1 and N2 were both 2, totaling 4 LSTM
blocks as with the original E3Net. The baseline E3Net train-
ing followed the aforementioned parameters and used 4 LSTM
blocks. For all VoiceFilter-Lite models, we employed 4 LSTM
layers with 512 hidden dimensions and split them equally, as
with E3Net. We used power-law compressed STFT magnitudes
as input, where STFT parameters followed the same window
size and hop size as E3Net. We trained all the models with the
power-law compressed phase-aware (PLCPA) loss function (see
Eq. (1) of [2]). We employed the pre-trained Res2Net speaker
embedding model of [28].
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Table 2: Computational complexities of different models and their results for real recording test sets. Real time factor (RTF) was
measured on Intel® Xeon® W-2133 CPU@3.60GHz with a single-thread configuration by taking averages over 1000 independent runs.

Complexity DNS Challenge v4 Blind Test Set AEC Challenge FST AEC Challenge DT
Parameters
(millions) RTF SIG↑ BAK↑ OVR↑ AECMOS

ECHO↑ ERLE↑ AECMOS
ECHO↑

AECMOS
DEG↑

Baseline systems
No Enhancement - - 3.71 2.17 2.40 1.98 0.0 1.81 4.11
AlignCruse [6] - AEC 0.45 0.056 3.58 3.85 3.18 4.12 44.40 4.34 3.91
pGTCNN [4] - PSE-AEC 5.33 0.229 3.42 4.04 3.13 4.39 48.27 4.58 3.69

Effects of proposed improvements on VoiceFilter-Lite and E3Net
VoiceFilter-Lite [7]

- AEC 8.56 0.143 3.43 3.86 3.07 4.46 48.97 4.33 3.62
- PSE 8.03 0.134 3.44 3.91 3.11 2.71 18.03 4.11 3.73
- PSE-AEC Naı̈ve 8.36 0.138 3.25 3.87 2.92 4.43 45.41 4.26 3.24
- PSE-AEC w/o SC 8.36 0.142 3.45 3.89 3.09 4.44 45.63 4.31 3.69
- PSE-AEC w/ SC 8.56 0.143 3.49 3.88 3.10 4.42 45.03 4.32 3.71

E3Net [3]
- AEC 3.28 0.054 3.52 4.09 3.24 4.47 47.91 4.65 3.97
- PSE 3.17 0.050 3.53 4.07 3.24 2.20 11.42 4.33 4.04
- PSE-AEC Naı̈ve 3.23 0.054 3.49 4.06 3.19 4.39 45.38 4.61 3.46
- PSE-AEC w/o SC 3.27 0.054 3.45 4.08 3.16 4.45 49.06 4.61 3.92
- PSE-AEC w/ SC 3.28 0.054 3.52 4.09 3.23 4.41 46.78 4.62 3.98

4.2. Baseline models for individual tasks

We used AlignCruse [6] as our AEC baseline model because
of its promising AEC results and low computational require-
ments. The model is based on STFT input and consists of a 2D
convolutional encoder and decoder pair, a recurrent bottleneck
block, and an align-block. We used the code and pre-trained
model provided by the authors, which outperformed the one re-
ported in the original paper [6]. Additionally, we trained E3Net
and VoiceFilter-Lite models specifically for the AEC task by re-
moving the d-vector input. Except for the removed d-vector in-
put, these models had the same architectures as the E3Net and
VoiceFilter-Lite models for PSE-AEC, respectively. It should
be noted that some training noise files contained human speech,
which may have provided the AEC models with a modest inter-
fering speaker suppression capability.

Meanwhile, as our PSE baseline, we employed a personal-
ized E3Net model and a VoiceFilter-Lite model using 4 LSTM
layers. These models were not equipped with the far-end sig-
nal input. Note that this E3Net-based PSE model used different
configurations than the one used in the previous paper [3] to
ensure a fair comparison with our PSE-AEC E3Net model.

We also trained PSE-AEC E3Net and VoiceFilter-Lite
Naı̈ve models to examine the impact of the proposed training
and modeling methods. The E3Net Naı̈ve model used a learn-
able encoder for both the microphone and far-end signals and
concatenated these features and the speaker embedding vec-
tor before the projection layer. For VoiceFilter-Lite, the STFT
features of both the microphone and far-end signals were con-
catenated and coupled with the speaker embedding before they
were fed to the first LSTM layer. The Naı̈ve models did not
contain the align-block, the proposed bypass path, and, in the
case of E3Net, the second projection layer. Finally, we trained
pGTCNN using the same parameters described in [4] to com-
pare our models with a PSE-AEC model that is computationally
more expensive.

4.3. Results and discussions

Tables 1 and 2 show all experimental results for the simu-
lated and real-recording test sets, respectively. In the lower
half of both tables, we show the results of AEC-only, PSE-
only, and three PSE-AEC configurations for both VoiceFilter-
Lite and E3Net models. The simulation experimental results in
Table 1 show that the PSE-AEC-Naı̈ve configurations consis-
tently produced higher TSOS for both model types. The real-

recording test results in Table 2 also show that the Naı̈ve con-
figuration yielded lower AECMOS DEG scores than the other
models, suggesting high distortion for the double-talk case. Us-
ing the skip connection slightly improved the DNSMOS and
AECMOS DEG at the cost of FST performance for the real-
world recordings and produced lower WERs for the simulated
ones, especially for TS1-echo and TS2-echo. Finally, com-
paring the PSE-AEC with the proposed improvements and the
AEC-only and PSE-only configurations, we can see that the
joint model achieved good performance for all conditions with
both VoiceFilter-Lite and E3Net at the expense of slight degra-
dations in the test sets that these expert models were optimized
for (TS1 for PSE-only and TS2-echo for AEC-only). These re-
sults demonstrate the effectiveness of the proposed PSE-AEC
model improvements for the two model types examined.

Tables 1 and 2 also show three baseline results in the up-
per half. The joint PSE-AEC model with E3Net outperformed
the recently proposed pGTCNN model for all conditions despite
the less computational requirement. Also, it outperformed the
AEC model based on AlignCruse in terms of AEC performance
with similar computational cost. These results show the com-
petitiveness of the PSE-AEC model enhanced with the proposed
improvements compared with the existing real-time models.

Finally, to further validate our experimental results, we
compared the best PSE-AEC E3Net model with recently pro-
posed lightweight PSE models, Personalized PercepNet [1]
and UPN-AE-0.9 [13]. Since these models were benchmarked
with the DNS Challenge v4 development set by using pDNS-
MOS p.835, we also measured our model’s performance un-
der the same condition. Our model achieved SIG, BAK, and
OVR scores of 3.491, 3.982, and 3.096, respectively, and it
outperformed both Personalized PercepNet (3.427/3.659/2.880
in SIG/BAK/OVR) and UPN-AE-0.9 (3.454/3.607/2.877 in
SIG/BAK/OVR).

5. Conclusions
We described a set of methods to improve causal joint PSE-
AEC models. Our proposed improvements include adding a
new learnable encoder for the far-end signal for time-domain
models, an align-block for enhanced AEC robustness, a bypass
path that enables multi-task learning, and a skip connection.
Our comprehensive evaluation using E3Net and VoiceFilter-
Lite showed that the models obtained using the proposed meth-
ods were effective in all tasks of PSE, AEC, and PSE-AEC.
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